Department of Mathematics, Faculty of Science, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{BC}}$ of A–Eskwadraat In 2006/2007, the course WISM464 was given by Dr. K. Dajani.

Ergodic Theory (WISM464) 30 January 2006

You are not allowed to discuss this exam with your fellow students.

Question 1

Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesque σ -algebra, and λ is Lebesque measure. Let $T : [0,1) \to [0,1)$ be defined by

$$Tx = \begin{cases} n(n+1)x - n & \text{if } x \in \left\lfloor \frac{1}{n+1}, \frac{1}{n} \right) \\ 0 & \text{if } x = 0 \end{cases}$$

Define $a_1: [0,1) \to [2,\infty]$ by

$$a_1 = a_1(x) = \begin{cases} n+1 & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right), n \ge 1\\ \infty & \text{if } x = 0 \end{cases}$$

For $n \ge 1$, let $a_n = a_n(x)a_1(T^{n-1}x)$.

- a) Show that T is measure preserving with respect to Lebesgue measure λ .
- b) Show that for λ a.e. x there exists a sequence a_1, a_2, \ldots of positive integers such that $a_1 \geq 2$ for all $i \geq 1$, and

$$x = \frac{1}{a_1} + \frac{1}{a_1(a_1 - 1)a_2} + \ldots + \frac{1}{a_1(a_1 - 1)\dots a_{k-1}(a_{k-1} - 1)a_k} + \ldots$$

- c) Consider the dynamical system (X, \mathcal{F}, μ, S) where $X = \{2, 3, \ldots\}^{\mathbb{N}}, \mathcal{F}$ the σ -algebra generated by the cylinder sets, S the left shift on X, and μ the product measure with $\mu(\{x : x_1 = j\}) = \frac{1}{j(j-1)}$. Show that $([0, 1), \mathcal{B}, \lambda, T)$ and (X, \mathcal{F}, μ, S) are isomorphic. Conclude that T is a strongly mixing transformation.
- d) Consider the product space $([0,1) \times [0,1), \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$. Define the transformation $\mathcal{T} : [0,1) \times [0,1) \to [0,1) \times [0,1)$ by

$$\mathcal{T}(x,y) = \begin{cases} \left(Tx, \frac{y+n}{n(n+1)}\right) & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right)\\ (0,0) & \text{if } x = 0 \end{cases}$$

- 1. Show that \mathcal{T} is measurable and measure preserving with respect to $\lambda \times \lambda$. Prove also that \mathcal{T} is one-to-one and onto $\lambda \times \lambda$ a.e.
- 2. Show that $([0,1] \times [0,1), \mathcal{B} \times \mathcal{B}, \lambda \times \lambda, \mathcal{T})$ is a natural extension of $([0,1), \mathcal{B}, \lambda, \mathcal{T})$

Question 2

Let (X, \mathcal{F}, μ) be a probability space and $T: X \to X$ a measure preserving transformation. Let k > 0.

- a) Show that for any finit partition α of X one has $h_{\mu}\left(\bigvee_{i=0}^{k-1}\alpha, T^{k}\right) = kh_{\mu}(\alpha, T).$
- b) Prove that $kh_{\mu}(T) \leq h_{\mu}(T^k)$.
- c) Prove that $h_{\mu}(\alpha, T^k) \leq kh_{\mu}(\alpha, T)$.
- d) Prove that $h_{\mu}(T^k) = kh_{\mu}(T)$.

Question 3

Let X be a compact metric space, (B) the Borel σ -algebra on X and $T: X \to X$ a uniquely ergodic continuous transformation. Let μ be the unique ergodic measure, and assume that $\mu(G) > 0$ for all non-empty open sets $G \subseteq X$.

- a) Show that for each non-empty open subset G of X there exists a continuous function $f \in C(X)$, and a closed subset F of G of positive μ measure such that f(x) = 1 for $x \in F$, f(x).0 for $x \in G$ and f(x) = 0 for $x \in X$ G
- b) Show that for each $x \in X$ and for every non-empty open set $G \subseteq X$, there exists $n \ge 0$ such that $T^n x \in G$. Conclude that $\{T^n x : n \ge 0\}$ is dense in X.

Question 4

Let X be a compact metric space, and (B) the Borel σ -algebra on X and $T: X \to X$ be a continuous transformation. Let $N \ge 1$ and $x \in X$.

- a) Show that $T^N x = x$ if and only if $\frac{1}{N} \sum_{i=0}^{N-1} \delta_{T^i x} \in M(X,T)$. (δ_y is the Dirac measure concentrated at the point y.)
- b) Suppose X = 1, 2, ..., N and Ti = i + 1(mod(N)). Show that T is uniquely ergodic. Determine the unique rgodic measure.

Question 5

use the Shannon-McMillan-Breiman Theorem (and the Ergodic Theorem if necessary) in order to show that

a) $h_{\mu}(T) = \log\beta$, where $\beta = \frac{1+\sqrt{5}}{2}$, T the β -transformation defined on $([0,1), \mathcal{B})$ by $Tx = \beta x mod1$, and μ the T-invariant measure given by $\mu(B) = \int_B g(x) dx$, where

$$g(x) = \begin{cases} \frac{5+3\sqrt{5}}{10} & 0 \le x < 1/\beta\\ \frac{5+\sqrt{5}}{10} & 1/\beta \le x < 1 \end{cases}$$

b) $h_{\mu}(T) = -\sum_{j=1}^{m} \sum_{i=1}^{m} \pi_i p_{ij} \log p_{ij}$, where T is the ergodic markov shift on the space $(1, 2, \ldots, m^{\mathbb{Z}}, \mathcal{F}, \mu)$, with \mathcal{F} is the σ -algebra generated by the cylinder sets and μ is the Markov mesure with staionary distribution $\pi = (\pi_1, \pi_2, \ldots, \pi_m)$ and transition probabilities $(p_{ij}: i, j = 1, \ldots, m)$.