
Exam Software Testing & Verification 2011/2012
25 may 2012, 9:00–12:00,BBL-065

Lecturer: Wishnu Prasetya

1. [1.5pt] Consider this program:

1 St r ing foo (c : L i s t<Str ing>) {
2 i f (c==null)
3 c = new Lis t<Str ing >() ;
4 St r ing found = null ;
5 int k = 0 ;
6 for (s : S t r ing in c) {
7 i f (s . c onta in s (” foo ”)) {
8 found = s ;
9 k++ ;

10 }
11 }
12 return found + k ;
13 }

(a) Give a control flow graph that correponds to the program. It should be made clear in
your drawing which group of instructions and expressions is represented by each node.

(b) Give the definition of Edge-Pair Coverage, and give the smallest possible set of feasible
test-paths that would give you maximum Edge-Pair Coverage.

2. [1.5pt] Prime paths.

(a) Give the definitions of simple path and prime path.

(b) Consider the control flow graph below; 1 is the starting node, and 3 is the exit node.

0

1

2

3

List all prime paths in the graph.

(c) A coverage criterion C1 subsumes another criterion C2 if all test-set that satisfies C1

also satisfies C2. Give a test-set on the above graph that shows that the Edge Coverage
criterion does not subsume the Prime-path Coverage criterion.

(d) Give a definition of tour with detour. That is, when does a test-path t can be said to
tour a target path u with detour?

(e) Give a simple program that shows a situation where it is necessary to weaken the
concept of ’tour’ to ’tour with detour’; specify the problematic prime-path in that
example program.

1

3. [1.5pt] Consider the following control flow graph. The nodes are decorated with def and use

information; the edges have no def nor use.

0 : def = {x, y}

1 : def={x, y}, use={x, y}

2 : use={x} 3 : use={y}

4 : use={x, y}

State 0 is the initial-state, and state 4 is the end-state. If no def or use is mentioned on a
node, it means the corresponding decoration is empty on that node.

(a) Give all members of du(1, x) and du(1, 1, x).

(b) Give a test-set for the above graph, that shows that full All-Defs Coverage does not
subsume All-Uses Coverage. Hint: such a test-set gives full coverage of the first, but
not the second.

4. [1pt] Consider the classes A and B below; notice that the method f of A calls the method
judge of B.

1 class A {
2 b : B ;
3 . . .
4 St r ing f (int x) {
5 int y = x∗x ;
6 i f (x<0)
7 y = 0 ;
8 r = b . judge (y) ;
9 return r

10 }
11 }
12

13 class B {
14 . . .
15 St r ing judge (int y) {
16 i f (r eader == null)
17 return null ;
18 int x = reader . readFromFile (”data”) ;
19 i f (y>x)
20 return ”ok”
21 return ”not ok”
22 }
23 }

We want to test the integration between f and judge (in other words, we want to do
integration testing).

(a) List all the coupling variables and their corresponding coupling du-paths between f and
judge. You can use line numbers to identify the nodes in your paths.

2

(b) Specify the test-requirements (the TRs) for All-Coupling-Def Coverage and for All-
Coupling-Uses Coverage for the above example. You can specify the TRs in terms of
paths.

5. [1pt] Consider this function:

foo(p : Person, i : Insurance, a : Address)

The tester decided to divide the domain of each parameter above into the following blocks:

• Person : Child, Adult, Senior

• Insurance : None, Standard, Premium

• Address : Fixed,Moving

We will only consider abstract test-cases, which are expressed in terms of the blocks above
(you don’t have to specify the concrete values for p, i, and a).

(a) Give a test-set that would give full Pair Wise Coverage.

(b) Suppose we add a constraint that if the address is Moving, then the type of insurance
must be Premium, is it then still possible to get full Pair Wise Coverage? Explain
your answer.

(c) The tester chooses this test-case as a base test:

foo(Child, Premium,F ixed)

Note that this implies that those blocks have been chosen as base blocks. Give a
minimalistic test-set that gives maximal Base Choice Coverage. Take the constraint
given in (b) into account.

6. [1.5pt] Consider this predicate (it has three clauses):

isMasterStudent(x) ∨ (isStudent(x) ∧ (x.name=”foo”))

For this predicate, a test-case is just values assigned to the clauses. There is a constraint on
the clauses, namely that isMasterStudent(x) ⇒ isStudent(x); where ⇒ means ’implies’. A
test-case is only feasible if it satisfies this constraint. A test-set is feasible if it only contains
feasible test-cases.

(a) Give a feasible test-set (for the above predicate) that shows that Predicate Coverage
does not subsume Clause Coverage.

(b) Give a feasible test-set that gives full Correlated Active Clause Coverage, and indicates
for each test-case, which clause(s) it activates.

Hint: a truth-table can help you.

(c) What is the difference between Correlated Active Clause Coverage and Restricted Ac-
tive Clause Coverage? Does the test-set you gave in (b) give full Restricted Active
Clause Coverage?

(d) Give a feasible test-set that gives maximum Restricted Inactive Clause Coverage, and
indicates for each test-case, which clause(s) it makes inactivate.

7. [1pt] Mutation.

3

(a) Suppose we have a program P (s : String) whose input s is described by the following
BNF:

(1) S :: = ǫ

(2) S :: = S Brace

(3) S :: = S Curly

(4) Brace :: = ”()”
(5) Brace :: = ”(” Brace ”)”
(6) Curly :: = ”{}”

where S is the starting symbol. Quoted texts are terminals.

Give as precise as possible a definition of what it means for a test-set on P to have a
full Poduction Coverage.

Give such a test-set; indicate for each test-case which production rules it covers.

(b) Suppose we also want to do negative testing on P (s). That is, we want to test how it
deals with invalid s. We introduce a single mutation operator o that can be applied to
any of the above production rules to mutate the rule. Explain how to do the following:

i. Negative test on P that gives full Mutation Operator Coverage.

ii. Negative test on P that gives full Mutation Production Coverage.

8. [1pt] Consider the following classes. Notice that A2 is a subclass of A1, which is a subclass
of A, and notice the overriding of the method g.

1 class A {
2 int x ;
3 A a ;
4 public f () { g () ; x = a . x }
5 public g () { a = new A() ; a . x = . . . }
6 public h () { x = 0 ; a . x = 0 }
7 }
8

9 class A1 extends A {
10 ov e r r i d e public g () { super . g () ; a . x = . . . }
11 }
12

13 class A2 extends A1 {
14 ov e r r i d e public g () { h () }
15 }

(a) Draw the Yo-Yo graph of the above classes.

(b) What is the purpose of a Yo-Yo graph?

(c) Give an example of either data flow anomaly or a State Definition Anomaly.

4

