
Exam Software Testing & Verification 2011/2012
25 may 2012, 9:00–12:00,BBL-065

Lecturer: Wishnu Prasetya

1. [1.5pt] Consider this program:

1 St r ing foo (c : L i s t<Str ing>) {
2 i f (c==null)
3 c = new Lis t<Str ing >() ;
4 St r ing found = null ;
5 int k = 0 ;
6 for (s : S t r ing in c) {
7 i f (s . c onta in s (” foo ”)) {
8 found = s ;
9 k++ ;

10 }
11 }
12 return found + k ;
13 }

(a) Give a control flow graph that correponds to the program. It should be made clear in
your drawing which group of instructions and expressions is represented by each node.

(b) Give the definition of Edge-Pair Coverage, and give the smallest possible set of feasible
test-paths that would give you maximum Edge-Pair Coverage.

Answer: EPC: the TR consists of all paths in the program CFG, of length at most 2.

Note btw that I asked you to give test paths, not the TR itself.

2. [1.5pt] Prime paths.

(a) Give the definitions of simple path and prime path.

Answer: Simple path: is a path in the given CFG where every node appears just once,
except the first and the last nodes.

Prime path: is a simple path that is not a subpath of another simple path (so it is
maximal).

(b) Consider the control flow graph below; 1 is the starting node, and 3 is the exit node.

0

1

2

3

List all prime paths in the graph.

Answer: 013, 012, 0213, 121, 212

1

(c) A coverage criterion C1 subsumes another criterion C2 if all test-set that satisfies C1

also satisfies C2. Give a test-set on the above graph that shows that the Edge Coverage
criterion does not subsume the Prime-path Coverage criterion.

Answer: 01213, 0213 cover all edges, but not the prime path 212.

(d) Give a definition of tour with detour. That is, when does a test-path t can be said to
tour a target path u with detour?

Answer: t tours u with detour if every node of u appears in t and in the same order
(u is a subsequence of t)

(e) Give a simple program that shows a situation where it is necessary to weaken the
concept of ’tour’ to ’tour with detour’; specify the problematic prime-path in that
example program.

Answer: (not a direct answer of the question:) In the CFG it appears that there is an
edge from i → j, but this edge is actually infeasible. There is however an alternative
path from i to j. In this situation we may opt to allow detour in our touring definition.
See also the example in the book.

3. [1.5pt] Consider the following control flow graph. The nodes are decorated with def and use
information; the edges have no def nor use.

0 : def = {x, y}

1 : def={x, y}, use={x, y}

2 : use={x} 3 : use={y}

4 : use={x, y}

State 0 is the initial-state, and state 4 is the end-state. If no def or use is mentioned on a
node, it means the corresponding decoration is empty on that node.

(a) Give all members of du(1, x) and du(1, 1, x).

Answer: The def/use decoration in node 1 is ambiguous as it does not specify the
exact order of the def and use within the node. I take this into account when I reviewed
your answers, and accept all possibe interpretations. For the answer below, I assume
both uses occur before the defs.

du(1, x) = 12, 124, 1234, 1231

du(1, 1, x) = 1231

(b) Give a test-set for the above graph, that shows that full All-Defs Coverage does not
subsume All-Uses Coverage. Hint: such a test-set gives full coverage of the first, but
not the second.

Answer: Note that for ADC, for each du(i, var), the TR only needs to include one
element of the du.

So, just a single test 0124 will give full ADC. For example it tours one member of
du(1, x), and thus covers the test requirement for that du. However we miss the only
member of du(1, 1, x), and thus fails to give full AUC.

Also note that I asked for test-cases, not TR.

4. [1pt] Consider the classes A and B below; notice that the method f of A calls the method
judge of B.

2

1 class A {
2 b : B ;
3 . . .
4 St r ing f (int x) {
5 int y = x∗x ;
6 i f (x<0)
7 y = 0 ;
8 r = b . judge (y) ;
9 return r

10 }
11 }
12

13 class B {
14 . . .
15 St r ing judge (int y) {
16 i f (r eader == null)
17 return null ;
18 int x = reader . readFromFile (”data”) ;
19 i f (y>x)
20 return ”ok”
21 return ”not ok”
22 }
23 }

We want to test the integration between f and judge (in other words, we want to do
integration testing).

(a) List all the coupling variables and their corresponding coupling du-paths between f and
judge. You can use line numbers to identify the nodes in your paths.

Answer: Coupling vars are variables which are defined in the caller and used in the
callee, or the other way around. These are y, r.

A coupling du-path for y is a du-path from the last def of y in the (in the above case)
f to its first use in the judge.

Coupling du-paths for y are:

Def y at line 5: 5,(if-false)8,16,(if-true)17,18
Def y at line 5: 5,(if-false)8,16,(if-false),18
Def y at line 7: 7,8,16,(if-true)17,18
Def y at line 7: 7,8,16,(if-false),18

Coupling du-paths for r are:

Def r/return at line 17 : 17,8
Def r/return at line 20 : 20,8
Def r/return at line 21 : 21,8

(b) Specify the test-requirements (the TRs) for All-Coupling-Def Coverage and for All-
Coupling-Uses Coverage for the above example. You can specify the TRs in terms of
paths.

Answer: For ACDC we only need to include one path per def of each coupling variable
above. So, for example:

Def y at line 5: 5,(if-false)8,16,(if-true)17,18
Def y at line 7: 7,8,16,(if-true)17,18
Def r/return at line 17 : 17,8
Def r/return at line 20 : 20,8
Def r/return at line 21 : 21,8

3

Note that this time you are asked to get the TR, and not test-cases.

Because the first uses of both y and r occur in only one location (repectively), then the
above TR is also good for ACUC.

5. [1pt] Consider this function:

foo(p : Person, i : Insurance, a : Address)

The tester decided to divide the domain of each parameter above into the following blocks:

• Person : Child, Adult, Senior

• Insurance : None, Standard, Premium

• Address : Fixed,Moving

We will only consider abstract test-cases, which are expressed in terms of the blocks above
(you don’t have to specify the concrete values for p, i, and a).

(a) Give a test-set that would give full Pair Wise Coverage.

Answer: 9 test-cases will be sufficient, e.g.:

CNF CSF CPM
ANF ASM APF
SNM SSF SPM

(b) Suppose we add a constraint that if the address is Moving, then the type of insurance
must be Premium, is it then still possible to get full Pair Wise Coverage? Explain
your answer.

Answer: No, because then the combination NM and SM become unfeasible.

(c) The tester chooses this test-case as a base test:

foo(Child, Premium,F ixed)

Note that this implies that those blocks have been chosen as base blocks. Give a
minimalistic test-set that gives maximal Base Choice Coverage. Take the constraint
given in (b) into account.

Answer: CPF
CPM
CNF
CSF
APF
SPF

Note that we do not violate the given constraint.

6. [1.5pt] Consider this predicate (it has three clauses):

isMasterStudent(x) ∨ (isStudent(x) ∧ (x.name=”foo”))

For this predicate, a test-case is just values assigned to the clauses. There is a constraint on
the clauses, namely that isMasterStudent(x) ⇒ isStudent(x); where ⇒ means ’implies’. A
test-case is only feasible if it satisfies this constraint. A test-set is feasible if it only contains
feasible test-cases.

4

(a) Give a feasible test-set (for the above predicate) that shows that Predicate Coverage
does not subsume Clause Coverage.

Answer:
iM iS iF φ
1 1 0 1
0 1 0 0

Note that the tests respect the constraint iM ⇒ iS.

(b) Give a feasible test-set that gives full Correlated Active Clause Coverage, and indicates
for each test-case, which clause(s) it activates.

Hint: a truth-table can help you.

Answer:

piM = ¬iS ∨ ¬iF
piS = ¬iM ∧ iF
piF = ¬iM ∧ iS

iM iS iF φ piM piS piF note
1 1 1 1 1
2 1 1 0 1 Y1
3 1 0 1 1 Y1 violating constraint
4 1 0 0 1 Y1 violating constraint
5 0 1 1 1 Y1 Y1
6 0 1 0 0 Y0 Y0
7 0 0 1 0 Y0 Y0
8 0 0 0 0 Y0

We can select for example the pairs (2,6) that activates iM , (5,7) for iS, and (5,6) for
iF . Hence, 2,6,5,6 as test-cases will do.

(c) What is the difference between Correlated Active Clause Coverage and Restricted Ac-
tive Clause Coverage? Does the test-set you gave in (b) give full Restricted Active
Clause Coverage?

Answer: In both CACC and RACC not only that for each major clause we have to
cover 1/0, but the corresponding value of the formula f must also change. However, in
RACC the used values of the minor clauses must be the same, whereas in CACC this
does not have to be the case.

The above proposes test-cases also give RACC.

(d) Give a feasible test-set that gives maximum Restricted Inactive Clause Coverage, and
indicates for each test-case, which clause(s) it makes inactivate.

Answer: In RAIC for each major clause we have to make it inactive. We need to
cover all four combinations of the value of the major clause and the value of f , namely
00, 01, 10, 11. For the cases where the value of f is 0, the chosen values of the minor
clauses must be the same. Similarly when for the cases where f is 1.

Note that some of the cases may be unfeasible.

Not that when for example piM is false, iM becomes inactive.

5

iM iS iF φ piM piS piF note
1 1 1 1 1 X11 X11 X11
2 1 1 0 1 Y1 X11 X01
3 1 0 1 1 Y1 X01 X11 violating constraint
4 1 0 0 1 Y1 X01 X01 violating constraint
5 0 1 1 1 X01 Y1 Y1
6 0 1 0 0 Y0 X10 Y0
7 0 0 1 0 Y0 Y0 X10
8 0 0 0 0 Y0 X00 X00

We can see above that 1,2,7,8 give full RAIC for the major clause iF .

1,3,6,8 would give full RAIC for the major clause iS. Unfortunately 3 is not allowed.
We can instead use the pair (2,4) instead of (1,3). But 4 is also not allowed. So the
best we can give is for example 1,6,8.

Full RAIC for iM is not possible. The best we can give is 1,5.

So, a test-set with maximum RAIC is 1,2,5,6,7,8.

7. [1pt] Mutation.

(a) Suppose we have a program P (s : String) whose input s is described by the following
BNF:

(1) S :: = ǫ
(2) S :: = S Brace
(3) S :: = S Curly
(4) Brace :: = ”()”
(5) Brace :: = ”(” Brace ”)”
(6) Curly :: = ”{}”

where S is the starting symbol. Quoted texts are terminals.

Give as precise as possible a definition of what it means for a test-set on P to have a
full Poduction Coverage.

Give such a test-set; indicate for each test-case which production rules it covers.

Answer: Full Production Coverage: for each production rule, there exists a derivation
sequence deriving one of the test input, such that the rule is applied in the derivation.

Example tests set: (), (()), {}

(b) Suppose we also want to do negative testing on P (s). That is, we want to test how it
deals with invalid s. We introduce a single mutation operator o that can be applied to
any of the above production rules to mutate the rule. Explain how to do the following:

i. Negative test on P that gives full Mutation Operator Coverage.
Answer: Generate inputs so that for each mutation operator (there is only one
above), there is an input that is derived using a production rule, mutated by the
operator.

ii. Negative test on P that gives full Mutation Production Coverage.
Answer: Generate inputs so that for each mutation operator o (there is only one
above), and for each production rule r, there is an input that is derived using r
mutated with o.

8. [1pt] Consider the following classes. Notice that A2 is a subclass of A1, which is a subclass
of A, and notice the overriding of the method g.

6

1 class A {
2 int x ;
3 A a ;
4 public f () { g () ; x = a . x }
5 public g () { a = new A() ; a . x = . . . }
6 public h () { x = 0 ; a . x = 0 }
7 }
8

9 class A1 extends A {
10 ov e r r i d e public g () { super . g () ; a . x = . . . }
11 }
12

13 class A2 extends A1 {
14 ov e r r i d e public g () { h () }
15 }

(a) Draw the Yo-Yo graph of the above classes.

(b) What is the purpose of a Yo-Yo graph?

Answer: It is used to abstractly visualize how polymorphism in OO (the one that is
due to inheritence) influence your objects’ behavior. Behavior is viewed abstractly in
terms of call sequences between methods accross the given inheritence chain/hierarchy.

(c) Give an example of either data flow anomaly or a State Definition Anomaly.

Answer: Data flow anomaly occurs when there is a use of some variable x which
has not been defined. Overriding a method may lead to such an anomaly, as is the
case above. The method f() contains a use of a.x. In the class A and A1, this use is
preceeded by a def, namely in g. But A2 overrides g() where this def now disappear.
So In A2.f() we have this anomaly.

This is not necessarily an error (it could be that A2.f is only called after a.x has been
set). But it indicates potential to make errors (when it turns out there there is a part
in the program that calls A2.f with unset a.x).

SDA. Let A1 be a subclass of A. SDA occurs when an object of A1 causes some promised
properties (in particular state related properties) of A to break. E.g. it could be that
A1 changes the part of the state defined by A inconsistently (from A’s perspective).

The above case of data flow anomaly is an instance of SDA.

7

