Answers to the exam ISP of December 19, 2005

1. Counting time in hours:
a. Taking $t=2$ in $P(N(t)=20)=e^{-10 t}(10 t)^{20} / 20$! yields 0.089
b. $P(N(0.01) \geq 1)=1-e^{-0.1}$, or $P(X \leq 0.01)$ where X is an interarrival time, hence exponentially distributed with parameter 10 .
c. For the remaining interarrival time X we have $E X=1 / 10$ hours, so 6 minutes after 12.00 hours. Hence at 12.06 hours.
d. Let $p=P($ job has >3 pages $)=1-e^{-2}(1+2+2+4 / 3) \approx 0.143$. Then $\{M(t)\}$ is a Poisson process with rate $10 p$, so $P(M(t)=m)=e^{-10 p t}(10 p t)^{m} / m$!.
2. a. Given the present, say $X_{n}=i$, the process will jump to 0 or $i+1$ with probabilities that do not depend on X_{n-1}, X_{n-2}, \ldots. Hence the process is a DTMC. It is irreducible (the path $0,1,2,3,4,5,6,0$ has positive probability so all states communicate), aperiodic $(\operatorname{GCD}(2,3,4, \ldots)=1$, so period of state 0 , and hence all other states, is 1), and not transient but recurrent (finite closed class).
b. Solving $\pi=\pi P$ (where $P_{i, 0}=i / 6, P_{i, i+1}=1-i / 6$, other entries equal 0) yields $\pi=\pi_{0}\left(1,1,5 / 6,20 / 36,60 / 6^{3}, 120 / 6^{4}, 120 / 6^{5}\right)$, so that $\sum \pi_{i}=1$ yields $\pi_{0}=\left(1+1+5 / 6+20 / 36+60 / 6^{3}+120 / 6^{4}+120 / 6^{5}\right)^{-1}=324 / 1223 \approx 0.265$.
c. $\lim _{n \rightarrow \infty} P\left(X_{n-1}=2, X_{n}=0\right)=\lim _{n \rightarrow \infty} P\left(X_{n-1}=2\right) P\left(X_{n}=0 \mid X_{n-1}=2\right)=$ $\pi_{2} P_{2,0}=5 / 6 \pi_{0} 1 / 3=324 / 1223$.
d. $m_{0}=1 / \pi_{0}=1223 / 324 \approx 3.77$.
3. Counting time in hours:
a. Suppose $X(t)=n$. Then time until next arrival (departure) has exponential distribution with parameter $\lambda=30(n \mu=60 n)$. Hence the minimum of these also has exponential distribution, with parameter $\lambda+n \mu=30+60 n$
b. Solving balance equations: $\lambda \pi_{n-1}=n \mu \pi_{n}$, so $\pi_{n}=\pi_{n-1} \lambda /(n \mu)=\ldots=$ $\pi_{0}(\lambda / \mu)^{n} / n!$, where $\pi_{0}=\left(\sum(1 / 2)^{n} / n!\right)^{-1}=e^{-1 / 2}$. Hence $\pi_{n}=e^{-1 / 2}(1 / 2)^{n} / n!$.
c. Since $\{X(t), t \geq 0\}$ is a birth-death process, it is time-reversible and we can consider the process $\{\tilde{X}(t)\}$ on the truncated state space $\{0,1, \ldots, 4\}$. For n in this set we find $\tilde{\pi}_{n}=\pi_{n} /\left(\sum_{i=0}^{4} \pi_{i}\right)$, so in particular $\tilde{\pi}_{4}=\frac{(1 / 2)^{4} / 4!}{1+1 / 2+(1 / 2)^{2} / 2!+(1 / 2)^{3} / 3!+(1 / 2)^{4} / 4!}=$ $1 / 633 \approx 0.0016$.
4. a. Yes, let X_{n} be the time between breakdowns $n-1$ and n. Then X_{n} consists of repair time plus remaining interarrival time. Hence all X_{n} have the same distribution and are independent.
b. Elementary renewal theorem and/or strong law of large numbers for renewal processes: long run (expected) rate is $1 / E X$, where $E X=T / 2+1 / \lambda$. So long run rate is $2 \lambda /(\lambda T+2)$.
c. Regenerative process or alternating renewal process:
E repair time $/ E$ cycle time $=\frac{T / 2}{T / 2+1 / \lambda}=\lambda T /(\lambda T+2)$.
5. a. No. The relation $E S_{N(t)+1}=\mu[m(t)+1]$ holds since $N(t)+1$ is a stopping time for the sequence $\left\{X_{i}\right\}$. But $N(t)$ is not (e.g. the event $N(t)=2$ also depends on the value of X_{3}), so we cannot use Wald to conclude that $E \sum_{i=1}^{N(t)} X_{i}=E X E N(t)$. Alternative: suppose that $E S_{N(t)}=\mu m(t)$ is true. Then the expectation of the renewal interval containing t would be $E X_{N(t)+1}=$ $E S_{N(t)+1}-E S_{N(t)}=E \mu[m(t)+1]-\mu m(t)=\mu$. But this is in contradiction with the inspection paradox, which says that $E X_{N(t)+1}>\mu$ (unless X_{i} is some constant w.p. 1).
b. Using partial integration we find

$$
\begin{aligned}
E e^{-s Y} & =\int_{0}^{\infty} e^{-s x} \frac{d}{d x} P(Y \leq x) d x \\
& =\mu^{-1} \int_{0}^{\infty} e^{-s x} P(X>x) d x \\
& =\mu^{-1} \int_{0}^{\infty} e^{-s x}(1-F(x)) d x \\
& =-\left.(\mu s)^{-1} e^{-s x}(1-F(x))\right|_{0} ^{\infty}-(\mu s)^{-1} \int_{0}^{\infty} e^{-s x} d F(x) \\
& =(\mu s)^{-1}-(\mu s)^{-1} \phi(s)=(1-\phi(s)) / s \mu
\end{aligned}
$$

