
Final Exam for Advanced Statistical Physics: NS-370B

Date: November 3rd, 2020

Time for Regular Students: 13:30 - 16:30

Upload to BlackBoard before 17:00h

Extra-Time Students Only: 13:30 - 17:00, upload before 17:30h

This exam consists of 3 questions. The total number of possible points is: 100.

This is an open-book exam, i.e., the use of notes is allowed.

You may only use your electronic device to upload the exam and consult the notes.

Please start every exercise on a new sheet of paper, with your name clearly written on every page.

The exam can be written in either English or Dutch. Please write clearly and using pen!
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Equation Cheat Sheet

A few formulas and information that may or may not be useful in this exam:

• The canonical partition function of a classical thermodynamic system of N identical particles in
a volume V a temperature T with Hamiltonian H(Γ) — Γ is a point in phase space — is written:

Z(N,V, T ) =
1

N !h3N

∫
dΓ exp[−βH(Γ)], where β−1 = kBT .

• The grand partition function of identical particles is given by:

Ξ(µ, V, T ) =
∑∞
N=0 exp(βµN)Z(N,V, T ),

and the grand-canonical distribution is given by:

fg(Γ, N) =
exp[βµN − βH(Γ)]]

[N !h3NΞ(µ, V, T )]
, with µ the chemical potential.

• The second virial coefficient B2 for an isotropic pair potential φ(r) is given by:

B2 = −1

2

∫
V

dr (exp(−βφ(r))− 1) .

• kB = 1.13× 10−23J/K, e = 1.6× 10−19C, and R = 8.31J/K/mol.

• The binomial coefficient (i.e., m choose n), which is the number of ways n objects can be chosen
from m objects, is given by:(
m

n

)
=

m!

(m− n)!n!
.

• Stirling’s approximation to order O(N) is given by: log(N !) = N logN −N .

• Gaussian Integral:∫ ∞
−∞

dx e−x
2

=
√
π.

• The Taylor series of f(x) around x = a is given by:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · .

• From the Taylor series we obtain:

ex =

∞∑
n=0

xn

n!

and

log(1− x) = −
∞∑
n=1

xn

n
.
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1. Mixing on a Square Lattice: (32 points)

Consider a square lattice. On a square lattice, each lattice site has four nearest neighbors. Assume that
each lattice site can be in one of three different states, which we will label A, B, and C. Assume that
the interaction between lattice sites is such that the contribution to the energy is zero when nearest
neighbor lattices are in different states, while it is −J when they are in the same state. The Hamiltonian
for this system can be written

H = −J
2

∑
i

∑
j

′
δσi,σj , (1)

where
∑′
j indicates a sum over nearest neighbors, σi represents the state of the lattice site, i.e., it can

be either A, B, or C, and δσi,σj
is the Kronecker delta function defined by

δσi,σj
=

{
0 if σi 6= σj
1 if σi = σj

. (2)

(a) Sketch a few microstates.

(b) Write down the expression for the canonical partition sum Z(N,T ) for this system, with N the
total number of sites and T the temperature. Do not evaluate the sum. Explain in a few words
by which exact method the average energy and the transition temperature can be found, support
this with the relevant equations.

It is quite complicated to evaluate Z(N,T ). However, the random mixing approximation (a form of
mean-field theory) will allow us to study the phase behavior of this system. Note that if there is a phase
transition in this system, it will be between a phase where the system consists of an equal number of
lattice sites in states A, B, and C, while in the ordered phase, one of the three will be more likely. For
simplicity, in this problem we will assume that the ordered state consists of more A lattice sites than
either B or C. Within the random mixing approximation, the states of all lattice sites are uncorrelated.
Define pA to be the probability that a particular lattice site is in state A, pB the probability that it is in
state B, and pC the probability that it is in state C. Note that in the disordered state, pA = pB = pC .

(c) Argue in a few words why, in both the ordered and disordered phases, pB = pC = (1− pA)/2.

(d) What is the expected potential energy in the system for a given value of pA?

(e) What is the entropy for given value of pA?

(f) Show that, within the random mixing approximation, the free energy of the system can be written

βF

N
= −Q

(
p2A +

1

2
(1− pA)2

)
+ pA log(pA) + (1− pA) log

(
1− pA

2

)
, (3)

where Q = 2βJ , and N is the number of lattice sites.

(g) In the disordered phase, pA = 1/3. Define an order parameter m such that m = 3
2 (pA − 1/3).

Note that is it 0 in the disordered phase and non-zero in the ordered phase. Rewrite the free
energy in terms of m. Show that the Landau expansion for the free energy can then be written

βF

N
= − log(3)− Q

3
+

(
1− 2

3
Q

)
m2 − m3

3
+
m4

2
+O

(
m5
)
. (4)

Hint: it is wise to try other calculations first, if you get stuck on the maths.

(h) Using the Landau free energy, determine the temperature for which the m 6= 0 minimum becomes
stable. What happens when

(
1− 2

3Q
)
< 0?

The exam continues on the next page ⇒
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2. Dieterici’s Equation: (36 points)

Assume that a gas obeys Dieterici’s equation of state

βp

(
1

ρ
− b
)

= e−βaρ, (5)

where p is the pressure, ρ = N/V with N the number of particles and V the volume, and a and b are
coefficients that set the properties of the gas.

(a) Show that in the low-density limit Dieterici’s equation of state reduces to that of the Van der
Waals gas and provide the expression for the third virial coefficient.

(b) Interpret the ‘improvement’ made to the Van der Waals gas by the exponential term on the
right-hand side of Dieterici’s equation of state equation using a few words.

(c) Sketch three isotherms of p as a function of v = V/N for the Dieterici’s equation of state above,
at, and below the critical temperature Tc, respectively, indicating which is which. Label your axes
and indicate the spinodal points.

(d) Show that kBTc = a/(4b), the critical pressure is given by pc = a/(4be2), and critical volume per
particle is vc = 2b. Here kB denotes the Boltzmann constant.

The isothermal compressibility can also be defined in terms of v and reads

κT = −1

v

(
∂v

∂p

)
T,N

. (6)

(e) Describe in a few words what happens with κT when you cross a spinodal curve for T < Tc.

(f) Introduce t = kB(T − Tc) and expand the compressibility around t = 0 and v = vc. What is the
value of the critical exponent γ, i.e., κT ∝ |t|−γ? Describe in a few words what feature of the
system leads to this behavior.

A researcher has applied Dieterici’s equation of state to model a gas-liquid phase separation, but is
dissatisfied with the descriptiveness at high density. They measure the interaction potential between
the particles and find that it is captured by

φSW(r) =

 ∞ r < σ
−ε σ ≤ r ≤ λσ
0 r > λσ

, (7)

with λ > 1 a measure for the range of the attraction (strength ε) and r the center-of-mass separation
between the particles. The high-density equation of state can be determined using

βpSW = ρ− βρ2

6

∫
V

dr rφ′SW(r)gSW(r). (8)

with ρ the particle number density, gSW(r) the pair-correlation function and φ′SW(r) the derivative with
respect to r of the pair potential.

(g) Sketch the pair distribution function in the case of a dense liquid. Label your axes and provide
the relevant length scales and limiting values. Graphically indicate how this relates to the concept
of a correlation length in the system.

(h) Demonstrate that you can write

βpSW = ρ+
2πσ3

3
ρ2
[
gSW(σ+) + λ3

(
gSW(λσ+)− gSW(λσ−)

)]
. (9)

with the “+” and “-” superscript indicating the direction in which the limit is taken, i.e., from
above and below, respectively. Explicitly, limp↓q r(p) = r(q+) for some function r, limit value q, and
variable p. Hint: introduce the auxiliary functions x(r) = exp [−βφSW(r)] and y(r) = gSW(r)/x(r),
and properties of the Heaviside function Θ(x) [Θ(x < 0) = 0 and Θ(x > 0) = 1] to arrive at this
result. Hint: keep this problem for last it is not worth a huge number of points.

The exam continues on the next page ⇒
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3. Isotropic-Nematic Transition for Colloidal Boards: (32 points)

In a simple model of a system of plate-like particles (platelet) one views the particles as rectangular
blocks with a square base of length L and thickness D, i.e. of the form L×L×D. A further simplification
is to restrict the number of possible orientations of each platelet to three, such that the main axes of the
platelets can only point in the direction of a laboratory frame x̂α, α = 1, 2, 3. A particle with orientation
α has its short axis along x̂α. The interaction between the particles is hard, i.e., overlap is not allowed.
The Helmholtz free energy F (N,V, T ) of N of such platelets in a volume V (ρ = N/V ) at temperature
T is given, within the second virial approximation, by

F

V kBT
=

3∑
α=1

ρα (log ραV − 1) +

3∑
α=1

3∑
α′=1

Bαα′ραρα′ , (10)

with ρα the density of particles with orientation α, and V the (irrelevant) thermal volume.

(a) Argue in a few words that Bαα′ is a symmetric 3×3 matrix. Calculate the second virial coefficients
B11 = B22 = B33 ≡ B‖ and B12 = B13 = B23 ≡ B⊥ for pairs of parallel and perpendicular
platelets, respectively.

(b) Consider from now on the “sheet” limit D/L→ 0. First calculate B‖/L
3 and B⊥/L

3 in this limit,
and then show that the dimensionless free energy ψ = FL3/V kBT takes the form

ψ =
∑
α

cα(log cα − 1 + log
V
L3

) + 2(c1c2 + c1c3 + c2c3), (11)

with dimensionless densities cα = L3ρα.

(c) Define the nematic order parameter S by c3 = c(1 + 2S)/3 and c1 = c2 = c(1 − S)/3, with
c = c1 + c2 + c3 = ρL3 the total dimensionless density. Give the range of the parameter S, keeping
in mind that densities are non-negative. Sketch the way the order parameter varies with c when
the system undergoes a phase transition, label your axes and indicate the coexistence region!

Assume now that the system has a temperature T < Tc and that it is prepared in a state that is in the
region of the phase diagram between the binodal and spinodal curves. Let the surface tension be given
by γ, and a supersaturation given by ∆g. Further assume that the nucleus that forms for the platelets
is a cube with edge length L.

(d) Write down the appropriate Gibbs free-energy difference ∆G as a function of L and calculate the
free-energy barrier for nucleation. What is the critical L and the maximum barrier height?

A scientist now adds polymers to a dilute platelet suspension.

(e) Explain in a few words (possibly supported by sketches) why it is favorable for the platelets to
self-assemble into columns when sufficient polymers have been added.

(f) Assume that a column has s platelets in it, let p be the probability of there being a bond and
(1− p) the probability of there not being a bond between two platelets. Argue in words (possibly
supported by a sketch) that the chain-length distribution follows c(s) ∝ (1− p)2ps−1.

(g) Assume that the total concentration of bonds is pρ and the total concentration of free ends is
2(1− p)ρ and that all platelets are part of some stack (possibly of 1). Use a chemical equilibrium
between bonds and free ends with equilibrium constant K to show that p ≈ 1− 1/

√
4Kρ when p

is almost 1. Hint: Do not overthink it.

(h) Suppose that for a 1D stack of hard platelets the free energy is known and given by F0 and that
spacing is also known. Explain in a few words — supported by equation(s) — what the technique
you can use to compute the free energy of the stack, once polymers have been added.

The platelet columns can give rise to percolation between the bottom and the top of the sample cell. A
simple model for this is a square 2D lattice with sites occupied with probability P and unoccupied with
probability 1 − P . We consider 2 × 2 superblocks. These are occupied if there is there is a connection
from top to bottom.

(i) Compute the non-trivial fixed point for the up-down percolation transition.

The exam ends here!
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