Algebraic Number Theory, January 16, 2020, 10:00-13:00
Problem 1. Let \mathcal{O} be the ring of integers of the the quadratic field $K=\mathbf{Q}(\sqrt{-71})$. Compute the unit group \mathcal{O}^{*} and the order of the class group $\mathrm{Cl}(\mathcal{O})$.

Problem 2. Find all solutions in integers of the equation $x^{2}=y^{3}-13$.
Problem 3. We call a positive integer $y \in \mathbf{Z}_{>0}$ peculiar if the difference between the consecutive cubes y^{3} and $(y+1)^{3}$ is a square.
Example: 7 is peculiar, as $7^{3}=343$ and $8^{3}=512$ have difference $512-343=169=13^{2}$.
(a) Find the next peculiar number.
(b) Show that there are infinitely many peculiar numbers.
(c) Show that the quotient of 2 consecutive peculiar integers tends to $7+4 \sqrt{3} \approx 13.9282$.

Problem 4. Let K_{1} and K_{2} be the cubic number fields obtained by adjoining a root of $f_{1}=X^{3}+15 X-15$ and $f_{2}=X^{3}-15 X+35$, respectively.
(a) Find the discriminants of K_{1} and K_{2}.
(b) Are K_{1} and K_{2} isomorphic number fields?

