Mastermath Commutative algebra practice exam 2017-2018 (three hours)

- Write your name, university, and student number on every sheet you hand in.
- You may use a printout of Altman-Kleiman's book A term of commutative algebra.
- Motivate all your answers.
- If you cannot do a part of a question, you may still use its conclusion later on.
 - (1) (a) Let k be a field, x and y variables, $R = k[[x]] \times k[y]$, and f = (x, 0). Show that there is exactly one prime ideal P of R with $P \cap \{1, f, f^2, f^3, ...\} = \emptyset$, and that P is not a maximal ideal.
 - (b) Let k be a field, A a finitely generated k-algebra. Show that for f in A not nilpotent there exists a maximal ideal P of A with $P \cap \{1, f, f^2, f^3, ...\} = \emptyset$.
 - (2) At the top of the following table, three rings R, each with an R-module M, are listed.

	$R = \mathbb{Z}, M = \mathbb{Q}$	R = k, M = k[X]	R = k[X], M = k where X acts as 0
flat			
faithfully flat	(b)		
finitely generated			
finitely presented		(c)	

- (a) Fill in each box in the table with T or F, according to whether or not the given property is true for the given R-module M in that column. Grading: 1 point for each correct answer. -0.5 points for each incorrect answer. 0 points for blank box. Minimum score 0.
- (b) Prove your answer in the box marked (b).
- (c) Prove your answer in the box marked (c).
- (3) Let $\varphi : R \to R'$ be a ring homomorphism, and $\varphi^* : \operatorname{Spec}(R') \to \operatorname{Spec}(R)$ the induced map. Assume that φ^* maps open sets to open sets.
 - (a) Show that if Q' is in Spec(R'), P and Q are in Spec(R), Q' maps to Q, and $P \subseteq Q$, then P is in the image of φ^* .

By (a) we know there exists P' in Spec(R') with P' lying over P. We want to show that there exists such a P' with $P' \subseteq Q'$, i.e., that going down holds.

We proceed by contradiction, so assume that for all P' lying over P we have $P' \not\subseteq Q'$. In order to lighten notation, we let $K = \operatorname{Frac}(R/P)$. Also, $R'_{Q'}$ and R'_f below are viewed as R-modules under the natural compositions $R \to R' \to R'_{Q'}$ and $R \to R' \to R'_f$.

- (b) Explain why $R'_{O'} \otimes_R K = 0$. (Hint: consider the natural homomorphism $R' \to R'_{O'}$.)
- (c) Prove that for every f in $R' \setminus Q'$ we have $R'_f \otimes_R K \neq 0$. (Hint: the image of $\operatorname{Spec}(R'_f) \to \operatorname{Spec}(R')$ is open.)
- (d) Explain why (b) and (c) are in contradiction (which finishes the proof).

(4) In this problem, (b), (c) and (d) are independent of each other.

Let $R \neq \{0\}$ be a Noetherian ring, with minimal prime ideals P_1, \ldots, P_r $(r \geq 1)$. Let

 $Z = \{a \text{ in } R \text{ such that multiplication by } a \text{ on } R \text{ is not injective} \}$

be the set of zero-divisors of R.

- (a) Show that $P_1 \cup \cdots \cup P_r \subseteq Z$.
- (b) Prove that if $\operatorname{nil}(R) = \{0\}$ then equality holds in (a). (Hint: you may want to consider a ring homomorphism to $\prod_{i=1}^{r} R/P_i$.)

- (c) Let K be a field. Show that for $R = K[x, y]/(x^2)$ equality holds in (a), but that for $R = K[x, y]/(x^2, xy)$ equality does not hold.
- (d) Let $b \in R \setminus Z$ and let S be the quotient ring R/bR. Viewing Spec(S) as $\mathcal{V}_{\text{Spec}(R)}(bR)$ inside Spec(R) in the usual way, show that if X is a *finite dimensional* irreducible component of Spec(R) and Y is an irreducible component of Spec(S) with $Y \subseteq X$, then dim $Y < \dim X$.

Points below; maximum score: 90; exam grade: $score/10+1$								
1a: 7 1b: 5	2a: 12 2	2b: 6 2c: 6	3a: 6 3b: 8	3 3c: 8 3d: 8	4a: 4 4b: 7 4c: 6 4d: 7			

An additional practice problem

- (1) (a) Let $R \subseteq S$ be an integral extension of rings. Show that the map $\text{Spec}(S) \to \text{Spec}(R)$ is closed.
 - (b) Let k be a field, x, y variables, $B = k[x] \times k[y]$, and

 $A = \{(f(x), g(y)) \text{ in } B \text{ with } f(0) = g(0)\}$.

- (i) Show that B is integral over A.
- (ii) Prove that the map $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is not an open map. (Hint: consider $\mathcal{V}_{\operatorname{Spec}(B)}(k[x] \times \{0\})$ and its image in $\operatorname{Spec}(A)$.)
- (c) Prove that the map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is open if all of the following hold:
 - $R \subseteq S$ is an integral extension of rings,
 - S is a domain,
 - R is a Noetherian ring of Krull dimension 1.

(Hint: first classify the closed subsets of Spec(R).)