- Write your name, university, and student number on every sheet you hand in.
- You may use a printout of Altman-Kleiman's book A term of commutative algebra.
- Motivate all your answers.
- If you cannot do a part of a question, you may still use its conclusion later on.
(1) (a) Let k be a field, x and y variables, $R=k[[x]] \times k[y]$, and $f=(x, 0)$. Show that there is exactly one prime ideal P of R with $P \cap\left\{1, f, f^{2}, f^{3}, \ldots\right\}=\emptyset$, and that P is not a maximal ideal.
(b) Let k be a field, A a finitely generated k-algebra. Show that for f in A not nilpotent there exists a maximal ideal P of A with $P \cap\left\{1, f, f^{2}, f^{3}, \ldots\right\}=\emptyset$.
(2) At the top of the following table, three rings R, each with an R-module M, are listed.

	$R=\mathbb{Z}, M=\mathbb{Q}$	$R=k, M=k[X]$	$R=k[X], M=k$ where X acts as 0
flat			
faithfully flat	(b)		
finitely generated			
finitely presented		(c)	

(a) Fill in each box in the table with T or F , according to whether or not the given property is true for the given R-module M in that column. Grading: 1 point for each correct answer. - 0.5 points for each incorrect answer. 0 points for blank box. Minimum score 0.
(b) Prove your answer in the box marked (b).
(c) Prove your answer in the box marked (c).
(3) Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism, and $\varphi^{*}: \operatorname{Spec}\left(R^{\prime}\right) \rightarrow \operatorname{Spec}(R)$ the induced map. Assume that φ^{*} maps open sets to open sets.
(a) Show that if Q^{\prime} is in $\operatorname{Spec}\left(R^{\prime}\right), P$ and Q are in $\operatorname{Spec}(R), Q^{\prime}$ maps to Q, and $P \subseteq Q$, then P is in the image of φ^{*}.
By (a) we know there exists P^{\prime} in $\operatorname{Spec}\left(R^{\prime}\right)$ with P^{\prime} lying over P. We want to show that there exists such a P^{\prime} with $P^{\prime} \subseteq Q^{\prime}$, i.e., that going down holds.

We proceed by contradiction, so assume that for all P^{\prime} lying over P we have $P^{\prime} \nsubseteq Q^{\prime}$. In order to lighten notation, we let $K=\operatorname{Frac}(R / P)$. Also, $R_{Q^{\prime}}^{\prime}$ and R_{f}^{\prime} below are viewed as R-modules under the natural compositions $R \rightarrow R^{\prime} \rightarrow R_{Q^{\prime}}^{\prime}$ and $R \rightarrow R^{\prime} \rightarrow R_{f}^{\prime}$.
(b) Explain why $R_{Q^{\prime}}^{\prime} \otimes_{R} K=0$. (Hint: consider the natural homomorphism $R^{\prime} \rightarrow R_{Q^{\prime}}^{\prime}$.)
(c) Prove that for every f in $R^{\prime} \backslash Q^{\prime}$ we have $R_{f}^{\prime} \otimes_{R} K \neq 0$. (Hint: the image of $\operatorname{Spec}\left(R_{f}^{\prime}\right) \rightarrow \operatorname{Spec}\left(R^{\prime}\right)$ is open.)
(d) Explain why (b) and (c) are in contradiction (which finishes the proof).
(4) In this problem, (b), (c) and (d) are independent of each other.

Let $R \neq\{0\}$ be a Noetherian ring, with minimal prime ideals $P_{1}, \ldots, P_{r}(r \geq 1)$. Let

$$
Z=\{a \text { in } R \text { such that multiplication by } a \text { on } R \text { is not injective }\}
$$

be the set of zero-divisors of R.
(a) Show that $P_{1} \cup \cdots \cup P_{r} \subseteq Z$.
(b) Prove that if $\operatorname{nil}(R)=\{0\}$ then equality holds in (a). (Hint: you may want to consider a ring homomorphism to $\prod_{i=1}^{r} R / P_{i}$.)
(c) Let K be a field. Show that for $R=K[x, y] /\left(x^{2}\right)$ equality holds in (a), but that for $R=K[x, y] /\left(x^{2}, x y\right)$ equality does not hold.
(d) Let $b \in R \backslash Z$ and let S be the quotient ring $R / b R$. Viewing $\operatorname{Spec}(S)$ as $\mathcal{V}_{\operatorname{Spec}(R)}(b R)$ inside $\operatorname{Spec}(R)$ in the usual way, show that if X is a finite dimensional irreducible component of $\operatorname{Spec}(R)$ and Y is an irreducible component of $\operatorname{Spec}(S)$ with $Y \subseteq X$, then $\operatorname{dim} Y<\operatorname{dim} X$.

Points below; maximum score: 90; exam grade: score/10+1
1a: 7 1b: 5 2a: 12 2b: 6 2c: 6 3a: 6 3b: 8 3c: 8 3d: 8 4a: 4 4b: 7 4c: 6 4d: 7

An additional practice problem

(1) (a) Let $R \subseteq S$ be an integral extension of rings. Show that the map $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ is closed.
(b) Let k be a field, x, y variables, $B=k[x] \times k[y]$, and

$$
A=\{(f(x), g(y)) \text { in } B \text { with } f(0)=g(0)\} .
$$

(i) Show that B is integral over A.
(ii) Prove that the map $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is not an open map. (Hint: consider $\mathcal{V}_{\text {Spec }(B)}(k[x] \times\{0\})$ and its image in $\left.\operatorname{Spec}(A).\right)$
(c) Prove that the map $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ is open if all of the following hold:

- $R \subseteq S$ is an integral extension of rings,
- S is a domain,
- R is a Noetherian ring of Krull dimension 1.
(Hint: first classify the closed subsets of $\operatorname{Spec}(R)$.)

