
INFOAFP – Exam

Andres Löh

Wednesday, 16 April 2008, 09:00–12:00

Solutions

• Not all possible solutions are given.

• In many places, much less detail than I have provided in the example solution
was actually required.

• Solutions may contain typos.

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Evaluation strategies (19 points total)

1 (5 points). Give an example of a Haskell expression of type Bool that evaluates to True
and that would not terminate (i.e., loop forever) in a language with strict evaluation.

Using equational reasoning, give the reduction sequence of your expression to True
and indicate clearly where a strict reduction strategy would select another redex. •

Solution 1. Here is one option:

example1 = head (repeat True)

And the reduction:

example1
≡ { definition of example1 }

head (repeat True)
≡ { definition of repeat }

head (True : repeat True)
≡ { definition of head (strict evaluation would reduce repeat True again) }

True

Another option:

loop = loop
example2 = const True loop

And the reduction:

example2
≡ { definition of example2 }

const True loop
≡ { definition of const (strict evaluation would reduce loop) }

True

◦

2 (4 points). Haskell has non-strict semantics (i.e., the implementations use lazy evalu-
ation) and is called a pure language. (S)ML on the other hand has strict semantics and
is an impure language.

What does purity mean in this context? Give an (small!) example of why Haskell is
considered pure and (S)ML is not. [Syntactic correctness, particularly of (S)ML code, is
not important.] •

Solution 2. Purity refers to the fact that functions are pure. A pure function depends
only on its input, i.e., will always have the same result when applied to a specific input.
In SML, one can write

val x = ref 0

2

2

and then

fun f () = (x := !x + 1; !x)

The function f has type unit → int, i.e., there is only one value () we can apply f to.
Consequently, if pure, f would have to be a constant function – but f will produce
different results because it depends on the current value of the reference x as a side
effect.

In Haskell, all functions (except for corner cases such as unsafePerformIO) are pure.
Side effects are only possible by producing values of certain built-in types such as IO
that are subsequently interpreted by the run-time system. ◦

3 (4 points). Would a lazy impure language or a strict pure language be possible?
Would such programming languages be useful? Discuss briefly. •

Solution 3. Both variants are possible. While some impure languages are known to
allow laziness in selected areas, a generally lazy impure language would probably not
be very useful, because effects and laziness do not mix well. It becomes extremely hard
to track when side effects will occur.

A strict pure language can be useful. Strict languages do not have ⊥ as a value of ev-
ery datatype, and that makes reasoning about programs simpler. Most strict languages
are impure just because strict evaluation is easier to track for the programmer, and im-
pure handling of side effects may seem more convenient. There is, however, no good
reason not to be more disciplined in a strict setting. Ωmega is an example of a strict
pure language. ◦

4 (6 points). Consider the following Haskell functions. Divide the functions into equiv-
alence classes, i.e., group the functions that are semantically equivalent (efficiency is
irrelevant). Give as many examples as needed to demonstrate that each of the classes
has indeed different behaviour.

s1 :: [a]→ b→ b
s1 xs y = case xs of { []→ y; → y}

s2 :: [a]→ b→ b
s2 xs y = seq xs y

s3 :: [a]→ b→ b
s3 xs y = y

s4 :: [a]→ b→ b
s4 xs y = if null xs then y else y

s5 :: [a]→ b→ b
s5 xs y = if map (const 0) xs = = [] then y else y

s6 :: [a]→ b→ b

3

2

s6 xs y = case xs of { []→ y; [x]→ y; → y}

s7 :: [a]→ b→ b
s7 xs y = seq [xs] y

•

Solution 4. There are three equivalence classes that can be distinguished by looking at
the cases xs = ⊥ and xs = 0 :⊥.

Functions s3 and s7 return y in all cases.
Functions s1, s2, s4 and s5 evaluate the first argument to weak head normal form, and

therefore return ⊥ if xs = ⊥, but return y for xs = 0 :⊥ because that is already in weak
head normal form.

Function s6 has a pattern [x] and therefore has to evaluate the tail of xs to weak head
normal form as well. It will therefore return ⊥ for both xs = ⊥ and xs = 0 :⊥. ◦

Interactive programs (12 points total)

Consider the following datatype:

data GP a = End a
| Get (Int→ GP a)
| Put Int (GP a)

A value of type GP can be used to describe programs that read and write integer values
and return a final result of type a. Such a program can end immediately (End). If it
reads an integer, the rest of the program is described as a function depending on this
integer (Get). If the program writes an integer (Put), the value of that integer and the
rest of the program are recorded.

The following expression describes a program that continuously reads integers and
prints them:

echo = Get (λn→ Put n echo)

5 (1 point). What is the (inferred) type of echo? •

Solution 5.

echo :: GP a

◦

6 (4 points). Write a function

run :: GP a→ IO a

that can run a GP-program in the IO monad. A Get should read an integer from the
console, and Put should write an integer to the console.

4

2

Here is an example run from GHCi:

Main〉 run echo
? 42
42
? 28
28
? 1
1
? − 5
− 5
? Interrupted.
Main〉

[To better distinguish inputs from outputs, this version of run prints a question mark
when expecting an input. It is not required that your version does the same.] •

Solution 6. Here is the variant which prints the question mark. For this to run properly
in a compiled program, we would also have to flush stdout or modify the buffering
behaviour of stdout.

run (End x) = return x
run (Get g) = putStr "? ">> getLine >>= run ◦ g ◦ read
run (Put n k) = putStrLn (show n) >> run k

Simple version without prompt:

run′ (End x) = return x
run′ (Get g) = getLine >>= run′ ◦ g ◦ read
run′ (Put n k) = putStrLn (show n) >> run′ k

It would of course be nice to also handle incorrect inputs more gracefully than read
does. ◦

7 (3 points). Write a GP-program add that reads two integers, writes the sum of the two
integers, and ultimately returns (). •

Solution 7.

add :: GP ()
add = Get (λx→ Get (λy→ Put (x + y) (End ())))

◦

8 (4 points). Write a GP-program accum that reads an integer. If the integer is 0, it
returns the current total. If the integer is not 0, it adds the integer to the current total,
prints the current total, and starts from the beginning. •

5

2

Solution 8.

accum :: GP Int
accum = accum′ 0

accum′ :: Int→ GP Int
accum′ t = Get (λn→ if n = = 0 then End t

else Put (t + n) (accum′ (t + n)))

◦

Simulation (21 points total)

9 (4 points). Instead of running a GP-program in the IO monad, we can also simulate
the behaviour of such a program by providing a (possibly infinite) list of input values.
Write a function

simulate :: GP a→ [Int]→ (a, [Int])

that takes such a list of input values and returns the final result plus the (possibly infi-
nite) list of all the output values generated. •

Solution 9. This is the straight-forward solution:

simulate (End x) inp = (x, [])
simulate (Get g) (i : inp) = simulate (g i) inp
simulate (Put n k) inp = let (r, out) = simulate k inp

in (r, n : out)

Using an accumulating argument to hold the list of outputs is not helpful, because then
it is not possible to analyze partial results – in particular, echo can never be simulated
with an accumulating version because it never ends. ◦

10 (3 points). What is the result of evaluating the following two expressions?

simulate accum [5, 4 . . 0]

simulate accum [5, 4 . . 1]

•

Solution 10. The first expression results in

(15, [5, 9, 12, 14, 15])

whereas the second expression results in a pattern match failure. Note that the exact
nature of the result of the second expression depends on how simulate deals with an
inputs list that is not sufficiently long. ◦

6

2

11 (4 points). Define a QuickCheck property that states the following property using
simulate:

“If echo is given n numbers as input, then the first n numbers of its output will be
identical to the input.” •

Solution 11.

echoP :: [Int]→ Bool
echoP xs = take (length xs) (snd (simulate echo xs)) = = xs

Or even simpler:

echoP′ :: [Int]→ Bool
echoP′ xs = xs ‘isPrefixOf ‘ snd (simulate echo xs)

using isPrefixOf from Data.List. Indeed, these properties are fulfilled – evaluating

tests = quickCheck echoP >> quickCheck echoP′

results in

+++ OK, passed 100 tests.
+++ OK, passed 100 tests.

Using an accumulating version of simulate, the properties will fail immediately. ◦

12 (4 points). Which parts of the definition of simulate are covered by your property,
and which are not? (I.e., which parts of the definition of simulate would be highlighted
by HPC after running QuickCheck on your property – assuming that QuickCheck gen-
erates suitably random lists.) •

Solution 12.
Here is the actual output of HPC:

The rhs of the case for End is not covered, because echo does not ever produce End.
Also, the first component of the resulting pair is not covered, because the property only
checks the list, i.e., the second component.

Using an accumulating version of simulate, the End case will also not be covered, plus
the accumulator itself will not be covered in all the cases – since the property always
fails with an exception, there will never be a chance to actually perform the comparison
on the resulting list. ◦

7

2

13 (6 points). This is an attempt to define a QuickCheck property for accum:

accumP :: [Int]→ Property
accumP xs = all (λx→ x > 0) xs =⇒

simulate accum (xs ++ [0]) = = (last sl, sl)
where sl = scanl1 (+) xs

Here, scanl1 is defined as follows

scanl1 :: (a→ a→ a)→ [a]→ [a]
scanl1 f [] = []
scanl1 f (x : xs) = scanl f x xs

scanl :: (a→ b→ a)→ a→ [b]→ [a]
scanl f x xs = x : case xs of

[] → []
y : ys→ scanl f (f x y) ys

There are at least two problems with this property. Describe how they can be fixed [a
description is sufficient]. •

Solution 13. The definition of accumP fails with an exception on an empty input list due
to the call to last. There are several ways to fix this. For instance, one can use a variant
of last that returns 0 on the empty list.

Also, the condition that all values of the list must be positive will quickly exhaust the
test values. One can use a custom generator to fix this problem.

Here is a new version of the property that works:

accumP′ :: Property
accumP′ = forAll pos $ λxs→

let sl = scanl1 (+) xs
in simulate accum (xs ++ [0]) = = (last′ sl, sl)

last′ xs = if null xs then 0 else last xs

pos :: Gen [Int]
pos = sized $ λn→ do

k← choose (0, n)
replicateM k (choose (1, n + 1))

Calling quickCheck accumP′ yields:

+++ OK, passed 100 tests.

◦

8

2

Functors and monads (24 points total)

A map function for GP can be defined as follows:

instance Functor GP where
fmap f (End x) = End (f x)
fmap f (Get g) = Get (fmap f ◦ g)
fmap f (Put n x) = Put n (fmap f x)

14 (2 points). Describe the difference between the behaviour of run accum and the be-
haviour of run (fmap (∗2) accum). •

Solution 14. Only the final result will be doubled. The values printed during the exe-
cution of accum are unchanged. ◦

Instances of class Functor should generally fulfill the following two laws:

∀x. fmap id x ≡ x
∀f g x. fmap (f ◦ g) x ≡ fmap f (fmap g x)

15 (8 points). Prove the first of the two laws using equational reasoning (and ignoring
that values can be ⊥).

Note that if you want to prove a property P p for any p :: GP a via structural induction,
you have to prove the following three cases:

∀x. P (End x)
∀g. (∀x.P (g x))⇒ P (Get g)
∀n p. P p⇒ P (Put n p)

(Here, ⇒ denotes logical implication.) Note that the second case is slightly unusual
due to the function argument of Get: you may assume that P (g x) holds for any value
of x! •

Solution 15. We prove ∀y.fmap id y ≡ y by structural induction on y :: GP a.
Case y = End x:

fmap id (End x)
≡ { definition of fmap }

End (id x)
≡ { definition of id }

End x

Case y = Get g:

fmap id (Get g)
≡ { definition of fmap }

Get (fmap id ◦ g)

9

2

≡ { definition of (◦) }
Get (λx→ fmap id (g x))

≡ { induction hypothesis }
Get (λx→ g x)

≡ { eta-reduction (i.e., rewriting to point-free form) }
Get g

Case y = Put n x:

fmap id (Put n x)
≡ { definition of fmap }

Put n (fmap id x)
≡ { induction hypothesis }

Put n x

◦

16 (5 points). Define a sensible monad instance for GP. •

Solution 16.

instance Monad GP where
return x = End x
(Get g) >>= f = Get (λn→ g n >>= f)
(Put n x) >>= f = Put n (x >>= f)
(End x) >>= f = f x

◦

17 (5 points). Define a sensible MonadState instance for GP. Recall the MonadState class:

class (Monad m)⇒ MonadState s m | m→ s where
get :: m s
put :: s→ m ()

•

Solution 17.

instance MonadState Int GP where
get = Get (λn→ End n)
put n = Put n (End ())

◦

18 (4 points). What is the difference between the normal state monad as defined in
module Control.Monad.State and GP? Discuss whether you think it is a good idea to
make GP an instance of MonadState. •

10

2

Solution 18. While State maintains a single piece of state that can be affected using
get and put, GP makes use of two independent streams for input and output. As a
consequence, two subsequent invocations of get can produce different results, or a get
immediately after put will normally produce a different value than the one written us-
ing put. In other words, properties one might expect for instances of MonadState such
as

∀f x. do {get; x← get; f x} ≡ do {x← get; f x}
∀f x y. do {put x; y← get; f y} ≡ do {put x; f x}

do not hold for GP. On the positive side, it is not given that all instances of MonadState
should have these properties, and GP does implement the MonadState interface – so one
can argue that it should be reused. ◦

Type classes (10 points total, 5 bonus points)

19 (2 points). Consider this program:

equal :: (Eq s, MonadState s m)⇒ m Bool
equal = do

x← get
y← get
return (x = = y)

Is the given type signature the most general type signature for equal? What would
happen if the type signature would be omitted? •

Solution 19. Yes, the type signature gives the most general type. Without the type
signature, one would get a type error due to the monomorphism restriction. If the
monomorphism restriction is explicitly disabled in GHC, then GHC is able to infer the
type. ◦

20 (8 points). Translate type classes into explicit evidence in the above function equal.
Desugar the do-notation in the process [use the “simple” desugaring, without the pos-
sibility to pattern match on the left hand side of an arrow]. Define the dictionary types
that are required – you may omit class methods that are not relevant to this example.
You may also declare local abbreviations using let. •

Solution 20.

data EqD a = EqD {eq :: a→ a→ Bool}

data MonadD m = MonadD {ret :: ∀a.a→ m a,
bind :: ∀a b.m a→ (a→ m b)→ m b}

data MonadStateD s m = MonadStateD{monad :: MonadD m,
gt :: m s}

11

2

equalD :: EqD s→ MonadStateD s m→ m Bool
equalD eqD msD =

let (>>=) = bind (monad msD)
return = ret (monad msD)

in gt msD >>= λx→
gt msD >>= λy→
return (eq eqD x y)

◦

21 (5 bonus points). Haskell does not offer a scoping mechanism for instances. Instances
are always exported from modules, even if nothing else is. Also, instances cannot be
local. For example,

let instance Eq Char where
x = = y = ord (toUpper x) = = ord (toUpper y)

in "hello" = = "HeLlo"

(using ord and toUpper from Data.Char) is not legal Haskell.
Why do you think this decision has been made? Are there any problems you can

think of? •

Solution 21. The main problem is that it becomes tricky to track when the local instances
apply. The reason is that context reduction does not always take place immediately.

In the example above, one would probably expect that the type of the expression is
Bool and the local instance is used. However, what if we replace the expression after in
by

λxs ys→ xs ++ ys = = ys ++ xs

The type of this function is Eq a ⇒ [a] → [a] → Bool. At this point, it is not yet clear if
the function will be applied to strings or to some other lists.

One can of course specify the behaviour of this and comparable cases, but it is not im-
mediately clear which behaviour would be most intuitive, and all such changes would
at least make the language more complicated.

Exactly the same problems apply to instances that are local to a module. ◦

GADTs and kinds (14 points total)

Here is a variation of GP:

data GP′ :: ∗ → ∗ where
Return :: a→ GP′ a
Bind :: GP′ a→ (a→ GP′ b)→ GP′ b
Get′ :: GP′ Int
Put′ :: Int→ GP′ ()

12

2

This is a GADT. The type GP′ can trivially be made an instance of the classes Monad
and MonadState:

instance Monad GP′ where
return = Return
(>>=) = Bind

instance MonadState Int GP′ where
get = Get′

put = Put′

22 (6 points). A value of type GP can easily be transformed into a value of type GP′ as
follows:

gp2gp′ :: GP a→ GP′ a
gp2gp′ (End x) = Return x
gp2gp′ (Get f) = Get′ >>= λx→ gp2gp′ (f x)
gp2gp′ (Put n k) = Put′ n >> gp2gp′ k

Define a transformation in the other direction, i.e., a function

gp′2gp :: GP′ a→ GP a

such that gp′2gp ◦ gp2gp′ ≡ id for all values that do not contain ⊥. Does gp2gp′ ◦ gp′2gp
also yield the identity? [No formal proof is required.] •

Solution 22. In this version, the already defined monadic structure on GP is used. It is,
of course, possible to expand the definitions of return, (>>=), get and put.

gp′2gp (Return x) = return x
gp′2gp (Bind m f) = gp′2gp m >>= λx→ gp′2gp (f x)
gp′2gp Get′ = get
gp′2gp (Put′ x) = put x

The composition gp2gp′ ◦ gp′2gp is not the identity. As an example, consider the ex-
pression Bind (Return 0) Put′ :: GP′ (). A formal proof was not required, but here it is
anyway:

(gp2gp′ ◦ gp′2gp) (Bind (Return 0) Put′)
≡ { definition of (◦) }

gp2gp′ (gp′2gp (Bind (Return 0) Put′))
≡ { definition of gp′2gp }

gp2gp′ (gp′2gp (Return 0) >>= λx→ gp′2gp (Put′ x))
≡ { definition of gp′2gp, twice }

gp2gp′ (return 0 >>= λx→ put x)
≡ { definition of return for GP }

13

2

gp2gp′ (End 0 >>= λx→ put x)
≡ { definition of (>>=) for GP }

gp2gp′ ((λx→ put x) 0)
≡ { beta-reduction }

gp2gp′ (put 0)
≡ { definition of put for GP }

gp2gp′ (Put 0 (End ()))
≡ { definition of gp2gp′ }

Put′ 0 >> gp2gp′ (End ())
≡ { definition of (>>) }

Put′ 0 >>= λ → gp2gp′ (End ())
≡ { definition of (>>=) for GP′ }

Bind (Put′ 0) (λ → gp2gp′ (End ()))
≡ { definition of gp2gp′ }

Bind (Put′ 0) (λ → Return ())

The result Bind (Put′ 0) (λ → Return ()) is not equal to Bind (Return 0) Put′ :: GP′ ().
◦

23 (4 points). Do the monad laws hold for GP and GP′? [Give a counterexample if not,
argue briefly if yes – no formal proof is required.]

Describe advantages and disadvantages of the two variants. •

Solution 23. It is easy to see that GP′ does not fulfill the monad laws. The monad laws
require that

return 0 >>= put ≡ put 0

However, Bind (Return 0) Put′ is not equal to Put′ 0.
On the other hand, GP fulfills the monad laws. Here is a proof for completeness (even

though it was not required):
We first show that

∀x f . return x >>= f ≡ f x

We can prove this directly, without induction:

return x >>= f
≡ { definition of return for GP }

End x >>= f
≡ { definition of (>>=) for GP }

f x

The next law requires that

∀m. m >>= return ≡ m

14

2

We prove this by structural induction on m:
Case m = End x:

End x >>= return
≡ { definition of (>>=) for GP }

return x
≡ { definition of return for GP }

End x

Case m = Get g:

Get g >>= return
≡ { definition of (>>=) for GP }

Get (λn→ g n >>= return)
≡ { induction hypothesis }

Get (λn→ g n)
≡ { eta-reduction, i.e., rewrite to point-free form }

Get g

Case m = = Put n x:

Put n x >>= return
≡ { definition of (>>=) for GP }

Put n (x >>= return)
≡ { induction hypothesis }

Put n x

As final step, we have to show the associativity of (>>=), i.e., that

∀m f h. (m >>= f) >>= h ≡ m >>= (λx→ f x >>= h)

We show this by induction on m.
Case m = End x:

(End x >>= f) >>= h
≡ { definition of (>>=) for GP }

f x >>= h
≡ { abstracting from x }

(λx→ f x >>= h) x
≡ { definition of (>>=) for GP }

End x >>= (λx→ f x >>= h)

Case m = Get g:

(Get g >>= f) >>= h
≡ { definition of (>>=) for GP }

15

2

Get (λn→ g n >>= f) >>= h
≡ { definition of (>>=) for GP }

Get (λm→ (λn→ g n >>= f) m >>= h)
≡ { beta-reduction }

Get (λm→ (g m >>= f) >>= h)
≡ { induction hypothesis }

Get (λm→ g m >>= (λx→ f x >>= h))
≡ { definition of (>>=) for GP }

Get g >>= (λx→ f x >>= h)

Case m = Put n k:

(Put n k >>= f) >>= h
≡ { definition of (>>=) for GP }

Put n (k >>= f) >>= h
≡ { definition of (>>=) for GP }

Put n ((k >>= f) >>= h)
≡ { induction hypothesis }

Put n (k >>= (λx→ f x >>= h))
≡ { definition of (>>=) for GP }

Put n k >>= (λx→ f x >>= h)

This completes the proof of the monad laws for GP. ◦

24 (4 points). Define type synonyms of kind

((∗ → ∗)→ ∗)→ ∗

and

(∗ → ∗)→ (∗ → ∗)→ (∗ → ∗)

without using any user-defined datatypes. •

Solution 24.

type F f = f []
type G f g x = (f x, g x)

Main〉 : kind F
F :: ((∗ → ∗)→ ∗)→ ∗
Main〉 : kind G
G :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗

◦

16

2

