
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for the Exam

Andres Löh

Monday, 7 December 2009, 09:00–12:00

Please keep in mind that often, there are many possible solutions, and that these
example solutions may contain mistakes.

Context-free grammars

1 (10 points). Let A = {x, y, z}. Give context-free grammars for the following languages
over the alphabet A:

(a) L1 = {w |w ∈ A∗, #(x, w) > 3}

(b) L2 = {w |w ∈ A∗, #(x, w) < 3}

(c) L1 ∩ L2

Here, #(c, w) denotes the number of occurrences of a terminal c in a word w. •

Solution 1.

(a) Without abbreviations:

S → C x C x C x C
C → ε |X C
X→ x | y | z

With EBNF-abbreviations:

S → X∗ x X∗ x X∗ x X∗

X→ x | y | z

(b) Without abbreviations:

S → C | C x C | C x C x C
C→ ε | Y C
Y→ y | z

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

With EBNF-abbreviations:

S → Y∗ x? Y∗ x? Y∗

Y→ y | z

(c) The intersection of the two languages is the empty language. A grammar for the
empty language is, for example, the empty grammar (no productions) or

S→ S

where no derivations of terminal strings from the start symbol are possible.

◦

Grammar analysis and transformation

Consider the following context-free grammar G over the alphabet {a, b, c} with start
symbol S:

S→ SaSa
S→ SaSbSa
S→ b

2 (10 points). For each of the following words, answer the question whether it is in
L(G). If yes, give a parse tree. If not, argue informally why the word cannot be in the
language.

(a) babababba

(b) bababababa •

Solution 2.

(a) The word babababba is in L(G), as can be witnessed by the following parse tree:

S

S

b

a S

S

b

a S

b

a

b S

b

a

(b) The word bababababa is not in L(G). It contains an odd number of as, but it is easy
to prove via induction on the derivations in grammar G that any word derived
from G must have an even number of as.

2

2

It is also possible to argue via the length of the word (length 10 is only possible
by applying the first production three times, and then derive b for all remaining
occurrences of S; one can argue that this does not produce the desired word)
or by analyzing derivation sequences and argue that all sufficiently long words
must either contain the substring aa or bb. However, these arguments are more
complicated than going via the number of as and it is easier to forget a case.

◦

3 (11 points). Simplify the grammar G by transforming it in steps. Perform as many as
possible of the following transformations: removal of left recursion, left factoring, and
removal of unreachable productions. •

Solution 3. This is the original grammar:

S→ SaSa
S→ SaSbSa
S→ b

We can first left-factor the grammar:

S → SaSR
S → b
R→ a
R→ bSa

Now, we remove left recursion:

S → bZ?
Z→ aSRZ?
R→ a
R→ bSa

Of course, it is possible to remove left recursion first and perform left factoring later.
We then get

S → bZ?
Z→ aSaZ? | aSbSaZ?

after removal of left recursion, and left factoring then yields:

S → bZ?
Z→ aSR
R→ aZ? | bSaZ?

If desired, it is possible to perform more operations, but that was not expected.
◦

3

2

Alternative definitions of parser combinators

In the following tasks, you are not supposed to make use of the internal implementation
of parser combinators.

4 (4 points). Define (<$>) in terms of succeed and (<∗>). •

Solution 4. The map function on parsers can be defined as a derived combinator simply
as follows:

(<$>) :: (a→ b)→ Parser s a→ Parser s b
f <$> p = succeed f <∗> p

◦

5 (5 points). Let

anySymbol :: Parser s s

be a parser that consumes any single symbol in the input and returns it. The parser
only fails if the end of the input has been reached. Define

symbol :: Eq s⇒ s→ Parser s s

in terms of anySymbol, succeed, (>>=) and empty. •

Solution 5.

symbol x = anySymbol >>= λy→ if x = = y then succeed y else empty

Of course, we can write return instead of succeed. We can even use do-notation:

symbol x = do
y← anySymbol
if x = = y then return y else empty

Although returning y is preferable over returning x (exercise: why?), returning x is ok
as a solution.

◦

Combinators for permutations

6 (4 points). Write a parser combinator

perms2 :: Parser s a→ Parser s b→ Parser s (a, b)

such that perms2 p q parses p followed by q, or q followed by p, and returns the results
in a pair. Pay attention to the order in which the results are returned! •

4

2

Solution 6. Written such that the symmetry becomes most obvious:

perms2 p q = (λx y→ (x, y)) <$> p <∗> q
<|> (λy x→ (x, y)) <$> q <∗> p

The main difficulty is that we have to reorder the results so that the types match.
◦

7 (10 points). Now write a parser combinator

perms3 :: Parser s a→ Parser s b→ Parser s c→ Parser s (a, b, c)

where perm3 p q r parses any permutation of p, q and r.
If you find a way of improving the efficiency of the resulting parser, explain (for

example, in terms of the underlying grammar) what has to be done. It is not necessary
to give the resulting parser, however. •
Solution 7. The first approach is probably the following:

perms3 p q r = (λx y z → (x, y, z)) <$> p <∗> q <∗> r
<|> (λx z y→ (x, y, z)) <$> p <∗> r <∗> q
<|> (λy x z → (x, y, z)) <$> q <∗> p <∗> r
<|> (λy z x→ (x, y, z)) <$> q <∗> r <∗> p
<|> (λz x y→ (x, y, z)) <$> r <∗> p <∗> q
<|> (λz y x→ (x, y, z)) <$> r <∗> q <∗> p

However, this parser is in clear need for left-factoring. The grammar corresponding to
the parser above is:

S→ P Q R
| P R Q
| Q P R
| Q R P
| R P Q
| R Q P

which can be left-factored to

S → P X |Q Y | R Z
X→ Q R | R Q
Y → P R | R P
Z → P Q |Q P

If someone wrote this, it was sufficient. But now, X, Y, and Z are permutations of two
elements, so it is relatively easy to write the parser in an efficient, left-factored way:

perms3 p q r = (λx (y, z) → (x, y, z)) <$> p <∗> perms2 q r
<|> (λy (x, z) → (x, y, z)) <$> q <∗> perms2 p r
<|> (λz (x, y)→ (x, y, z)) <$> r <∗> perms2 p q

◦

5

2

Parsing logical propositions

Here is a grammar for logical propositions with start symbol P:

P→ P ∧ P
| P ∨ P
| P⇒ P
| ¬ P
| Ident
| (P)
| 1
| 0

Propositions can be composed from the constants true (1) and false (0) by using nega-
tion, conjunction, disjunction and implication, and parentheses for grouping.

Furthermore, propositions can contain variables – the nonterminal Ident represents
an identifier consisting of one or more letters.

A corresponding abstract syntax in Haskell is:

data P = And P P
| Or P P
| Implies P P
| Not P
| Var String
| Const Bool

8 (10 points). Resolve the operator priorities in the grammar as follows: negation (¬)
binds stronger that implication (⇒), which in turn binds stronger than conjunction (∧),
which in turn binds stronger than disjunction (∨). Furthermore, implication associates
to the right, whereas conjunction and disjunction associate to the left. Give the resulting
grammar. •

Solution 8. We split P into several nonterminals, corresponding to the different priority
levels:

P → P1
P1 → P1 ∨ P2 | P2
P2 → P2 ∧ P3 | P3
P3 → P4 ⇒ P3 | P4
P4 → ¬ P4 | Ident | (P) | 1 | 0

There should not be any surprises in the resulting grammar. I think it’s actually unusual
to have implication bind as strong. After placing the exam it occurred to me that it
probably makes more sense to have it bind weakest. But then again, it does not make
any difference for the difficulty of the assignment.

◦

6

2

9 (11 points). Give a parser that recognizes the grammar from Task 8 and produces a
value of type P:

parseP :: Parser Char P

You can assume that the symbols ¬,⇒, ∧, and ∨ are just characters. You can use chainl
and chainr, but if you want more advanced abstractions such as gen from the lecture
notes, you have to define them yourself. You may assume that spaces are not allowed
in the input. •

Solution 9. This is a rather direct transcription using chainl and chainr:

parseP = p1

p1 = chainl p2 (Or <$ symbol ’∨’)
p2 = chainl p3 (And <$ symbol ’∧’)
p3 = chainr p4 (Implies <$ symbol ’⇒’)
p4 = Not <$ symbol ’¬’<∗> p4

<|> Var <$> some (satisfy isLetter)
<|> parenthesised parseP
<|> Const True <$ symbol ’1’
<|> Const False <$ symbol ’0’

Using identifier, many1 or greedy1 for the Var case is also ok.
◦

10 (10 points). Define an algebra type and a fold function for type P. •

Solution 10. We just apply the systematic translation:

type PAlgebra r = (r→ r→ r, — And
r→ r→ r, — Or
r→ r→ r, — Implies
r→ r, — Not
String→ r, — Var
Bool→ r) — Const

foldP :: PAlgebra r→ P→ r
foldP (and, or, implies, not, var, const) = f

where f (And x1 x2) = and (f x1) (f x2)
f (Or x1 x2) = or (f x1) (f x2)
f (Implies x1 x2) = implies (f x1) (f x2)
f (Not x) = not (f x)
f (Var x) = var x
f (Const x) = const x

No surprises here.
◦

7

2

11 (10 points). Using the algebra and fold (or alternatively directly), define an evaluator
for propositions:

evalP :: P→ Env→ Bool

The environment of type Env should map free variables to Boolean values. You can
either use a list of pairs or a finite map with the following interface to represent the
environment:

data Map k v — abstract type, maps keys of type k to values of type v
empty :: Map k v
(!) :: Ord k⇒ Map k v→ k→ v
insert :: Ord k⇒ k→ v→ Map k v→ Map k v
delete :: Ord k⇒ k→ Map k v→ Map k v
member :: Ord k⇒ k→ Map k v→ Bool
fromList :: Ord k⇒ [(k, v)]→ Map k v

•

Solution 11. We assume

type Env = Map String Bool

The algebra is similar to the evaluator for expressions discussed in the lectures:

evalAlgebra :: PAlgebra (Env→ Bool)
evalAlgebra = (λx1 x2 e→ x1 e && x2 e,

λx1 x2 e→ x1 e ‖ x2 e,
λx1 x2 e→ not (x1 e) ‖ x2 e,
λx e→ not (x e),
λx e→ e ! x,
λx e→ x)

evalP = foldP evalAlgebra

The environment never changes, so defining

evalAlgebra :: Env→ PAlgebra Bool
evalAlgebra e = ((&&), (‖), (λx1 x2 → not x1 ‖ x2), not, (e!), id)

is simpler and ok as well.
◦

12 (5 points). Implement a tautology checker for propositions of type P:

tautology :: P→ Bool

A proposition is a tautology if and only if it evaluates to True regardless of the values
of any of its free varaibles.

8

2

It may be helpful to use the following function assignments that produces a list of all
possible Boolean assignments for a list of identifiers:

assignments :: [String]→ [[(String, Bool)]]
assignments [] = [[]]
assignments (n : ns) = [(n, x) : xs | x← [True, False], xs← assignments ns]

You can use evalP – even if you have not implemented it – in the definition of tautology.
•

Solution 12. We need a way to discover the free variables in P:

freeVarsAlgebra :: PAlgebra [String]
freeVarsAlgebra = ((++), (++), (++), id, (:[]), const [])
freeVars :: P→ [String]
freeVars = foldP freeVarsAlgebra

This algebra simply collects all the variables. Now we can define the tautology checker:

tautology p = all (λe→ evalP p (fromList e)) (assignments (freeVars p))

For all the assignments corresponding to the free variables, the proposition has to eval-
uate to true. The function all is a standard function from the prelude and can be defined
as follows:

all :: (a→ Bool)→ [a]→ Bool
all p = and . map p
and :: [Bool]→ Bool
and = foldr (&&) True

◦

13 (meta question). How many out of the 100 possible points do you think you will get
for this exam? •

Solution 13. I ask this question because it is the first time I’m setting an exam for the
course, and I’m genuinely interested how difficult the students perceive the exam to
be, and how good the students are in judging their own performance. Obviously, the
answer to this question has no relevance for the final result. ◦

9

2

