INFOB3TC – Solutions for Exam 2

Johan Jeuring

Monday, 25 January 2016, 8:30-10:30

Please keep in mind that there are often many possible solutions and that these example solutions may contain mistakes.

Questions

Regular expressions, languages and pumping lemmas

1 (10 points). Consider the DFA (X, Q, d, S, F) where $X = \{a, b, c\}$, $Q = \{q_1, q_2\}$, d is defined by:

$$d q_1 a = q_1$$

 $d q_1 b = q_2$
 $d q_2 a = q_1$
 $d q_2 c = q_2$

 $S = q_1$, and $F = \{q_2\}$. Give the regular expression denoting the language accepted by this automaton.

Solution 1.

$$a*b(a+b+c)*$$

Marking

For the following three tasks: consider the following three languages:

$$L_{1} = \{a^{n}b^{m}cd^{m}e^{n}|n,m \ge 0\}$$

$$L_{2} = \{(ab)^{n}cd^{m}|n,m \ge 0\}$$

$$L_{3} = \{a^{n}b(cd)^{n}e^{n}|n \ge 0\}$$

0

2 (5 points). One of the languages is regular, one context-free and not regular and one not context-free. Which are the regular and the non-regular context-free languages? •

Solution 2.

 L_2 is regular, L_1 is context-free, L_3 is neither.

3 (5 points). Give a regular grammar for the regular language, and a context-free for the context-free language.

Solution 3.

Here is a regular grammar for L_2 :

 $S \rightarrow abS$

 $S \rightarrow c$

 $S \rightarrow cB$

 $B \rightarrow d$

 $B \rightarrow dB$

Here is a context-free grammar for L_1 :

 $S \rightarrow aSe$

 $S \to T$

 $T \rightarrow bTd$

 $T \rightarrow c$

0

0

4 (10 points). Prove that the grammar that is context-free but not regular is indeed not regular by using the pumping lemma for regular languages . •

Solution 4.

The language L_1 is not regular. To prove it, we assume it is regular and find a contradiction using the pumping lemma.

For any n,

let $x = \varepsilon$, $y = a^n$, $z = b^m c d^m e^n$.

Then, $xyz = a^n b^m c d^m e^n \in L_1$ and $|y| \ge n$.

From the pumping lemma, we know there must be a loop in y, i.e. y = uvw with q = |v| > 0 such that $xuv^iwz \in L_1$ for all $i \in \mathbb{N}$.

Let i = 2. We expect $xuv^2wz \in L_1$. If $u = a^s$, $v = a^q$, $w = a^t$, then we get $a^{s+2} q^{+t}b^mcd^me^n = a^{n+q}b^mcd^me^n \in L$. But this word is not in L, since q > 0. Therefore, L_1 is not regular.

Marking

0

LR parsing

Consider the following grammar:

$$S \rightarrow ABC$$
\$

$$A o \mathtt{a}$$

$$A \to \mathtt{a} C$$

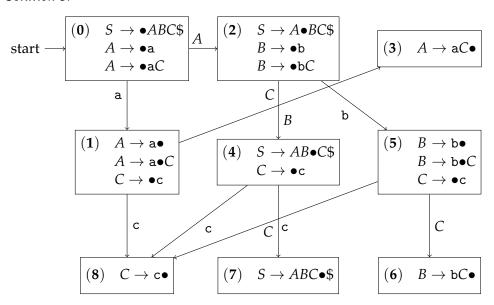
$$B \to b$$

$$B \to bC$$

 $C \rightarrow c$

5 (10 points). This grammar is not LR(0). Construct the LR(0) automaton for this grammar, and show which conflicts appear where.

Solution 5.



States (1) and (5) have a shift/reduce conflict.

Marking

0

6 (10 points). Is this grammar SLR(1)? If so, construct the SLR-table. If not, explain where you cannot make a choice in a shift/reduce conflict or a reduce/reduce conflict.

Solution 6. This grammar is not SLR(1). The follow symbol of A is b, so the conflict in state (1) can be resolved: shift if you see a c in the input, reduce if you see a b. The follow symbol of B is c, so the conflict in state (5) cannot be resolved.

Marking

0

7 (10 points). Play through the LR parsing process for the sentence "acbcc\$". If there is a choice somewhere, make this explicit. Show in each step at which state in your LR(0) automaton you are. \bullet

Solution 7.

stack	input	remark
(0)	acbcc\$	shift
(0)a (1)	cbcc\$	shift (choice)
(0)a(1) c(8)	bcc\$	reduce by $C \rightarrow c$
(0)a(1) C(3)	bcc\$	reduce by $A \rightarrow aC$
(0)A(2)	bcc\$	shift
(0)A(2) b(5)	cc\$	shift (choice)
(0)A(2) b(5) c(8)	c\$	reduce by $C \rightarrow c$
$(0)A(2) \ b(5) \ C(6)$	c\$	reduce by $B \rightarrow bC$
(0)A(2) B(4)	c\$	shift
(0)A(2) B(4) c(8)	\$	reduce by $C \rightarrow c$
(0)A(2) B(4) C(7)	\$	shift
(0)A(2) B(4) C(7)\$		reduce by $S \rightarrow ABC$ \$
S		accept

Marking

0

LL parsing

In these exercises we will look at the grammar

$$\begin{array}{l} S \to AB \\ A \to \mathtt{a} A\mathtt{a} \mid \varepsilon \\ B \to \mathtt{b} B\mathtt{b} \mid \varepsilon \end{array}$$

8 (15 points). Complete the table below by computing the values in the columns for the appropriate rows. Use *True* and *False* for property values and set notation for everything else.

NT	Production	empty	emptyRhs	first	firstRhs	follow	lookAhead
S							
	$A \rightarrow AB$						
A							
	$A o\mathtt{a}A\mathtt{a}$						
	$A o \varepsilon$						
В							
	$B o{ t b}B{ t b}$						
	$B \to \varepsilon$						

Solution 8.

NT	Production	empty	emptyRhs	first	firstRhs	follow	lookAhead
S		True		{a,b}		{}	
	$S \to AB$		True		$\{a,b\}$		$\{\mathtt{a},\mathtt{b}\}$
A		True		$\{\mathtt{a}\}$		$\{\mathtt{a},\mathtt{b}\}$	
	$A o\mathtt{a}A\mathtt{a}$		False		$\{\mathtt{a}\}$		$\{\mathtt{a}\}$
	$A o \varepsilon$		True		{}		$\{\mathtt{a},\mathtt{b}\}$
В		True		{b}		{b}	
	$B o{ t b}B{ t b}$		False		$\{\mathtt{b}\}$		{b}
	$B \to \varepsilon$		True		{}		{b}

Marking

0

9 (10 points). Is the above grammar LL(1)? Explain how you arrived at your answer. If the grammar is not LL(1), give a grammar that generates the same language and is LL(1).

Solution 9.

The above grammar is not LL(1) because the *lookAhead* sets of the *A* and *B* productions have a non-empty intersection. The following grammar generates the same language and is LL(1).

$$\begin{array}{l} S \to AB \\ A \to \mathtt{aa}A \mid \varepsilon \\ B \to \mathtt{bb}B \mid \varepsilon \end{array}$$

Since $Follow(A) = \{b\}$, and $Follow(B) = \{\}$, the intersections of lookahead sets of the productions for A and B, respectively, are empty.

Marking

0

10 (5 points). Show the steps that a parser for the above LL(1) grammar goes through to recognize the following input sequence:

aabb

For each step (one per line), show the stack, the remaining input, and the action (followed by the relevant symbol or production) performed. If you reach a step in which you cannot proceed, note the action as "error."

Solution 10.

stack	input	action
S	aabb	initial state
AB	aabb	expand S
$\mathtt{a}\mathtt{a}AB$	aabb	expand A
AB	bb	match $(2\times)$
В	bb	expand A
$\mathtt{bb}B$	bb	expand B
ε	ε	match $(2\times)$

Marking

0