INFOB3TC - Solutions for Exam 2

Johan Jeuring

Monday, 25 January 2016, 8:30-10:30

Please keep in mind that there are often many possible solutions and that these example solutions may contain mistakes.

Questions

Regular expressions, languages and pumping lemmas

1 (10 points). Consider the DFA (X, Q, d, S, F) where $X=\{a, b, c\}, Q=\left\{q_{1}, q_{2}\right\}, d$ is defined by:

$$
\begin{aligned}
& d q_{1} \mathrm{a}=q_{1} \\
& d q_{1} \mathrm{~b}=q_{2} \\
& d q_{2} \mathrm{a}=q_{1} \\
& d q_{2} \mathrm{c}=q_{2}
\end{aligned}
$$

$S=q_{1}$, and $F=\left\{q_{2}\right\}$. Give the regular expression denoting the language accepted by this automaton.

Solution 1.

$a^{*} b\left(a^{+} b+c\right)^{*}$

Marking

For the following three tasks: consider the following three languages:

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{m} c d^{m} e^{n} \mid n, m \geqslant 0\right\} \\
& L_{2}=\left\{(a b)^{n} c d^{m} \mid n, m \geqslant 0\right\} \\
& L_{3}=\left\{a^{n} b(c d)^{n} e^{n} \mid n \geqslant 0\right\}
\end{aligned}
$$

2 (5 points). One of the languages is regular, one context-free and not regular and one not context-free. Which are the regular and the non-regular context-free languages?

Solution 2.

L_{2} is regular, L_{1} is context-free, L_{3} is neither.
3 (5 points). Give a regular grammar for the regular language, and a context-free for the context-free language.

Solution 3.

Here is a regular grammar for L_{2} :

$$
\begin{aligned}
& S \rightarrow a b S \\
& S \rightarrow c \\
& S \rightarrow c B \\
& B \rightarrow d \\
& B \rightarrow d B
\end{aligned}
$$

Here is a context-free grammar for L_{1} :

$$
\begin{aligned}
& S \rightarrow a S e \\
& S \rightarrow T \\
& T \rightarrow b T d \\
& T \rightarrow c
\end{aligned}
$$

4 (10 points). Prove that the grammar that is context-free but not regular is indeed not regular by using the pumping lemma for regular languages.

Solution 4.

The language L_{1} is not regular. To prove it, we assume it is regular and find a contradiction using the pumping lemma.

For any n,
let $x=\varepsilon, y=a^{n}, z=b^{m} c d^{m} e^{n}$.
Then, $x y z=a^{n} b^{m} c d^{m} e^{n} \in L_{1}$ and $|y| \geqslant n$.
From the pumping lemma, we know there must be a loop in y, i.e. $y=u v w$ with $q=|v|>0$ such that $x u v^{i} w z \in L_{1}$ for all $i \in \mathbb{N}$.

Let $i=2$. We expect $x u v^{2} w z \in L_{1}$. If $u=a^{s}, v=a^{q}, w=a^{t}$, then we get $a^{s+2 q+t} b^{m} c d^{m} e^{n}=$ $a^{n+q} b^{m} c d^{m} e^{n} \in L$. But this word is not in L, since $q>0$. Therefore, L_{1} is not regular.

Marking

LR parsing

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A B C \$ \\
& A \rightarrow \mathrm{a} \\
& A \rightarrow \mathrm{aC} \\
& B \rightarrow \mathrm{~b} \\
& B \rightarrow \mathrm{~b} C \\
& C \rightarrow \mathrm{c}
\end{aligned}
$$

$\mathbf{5}$ (10 points). This grammar is not $\operatorname{LR}(0)$. Construct the $\operatorname{LR}(0)$ automaton for this grammar, and show which conflicts appear where.

Solution 5.

States (1) and (5) have a shift/reduce conflict.

Marking

6 (10 points). Is this grammar SLR(1)? If so, construct the SLR-table. If not, explain where you cannot make a choice in a shift/reduce conflict or a reduce/reduce conflict.

Solution 6. This grammar is not $\operatorname{SLR}(1)$. The follow symbol of A is b , so the conflict in state (1) can be resolved: shift if you see a c in the input, reduce if you see ab. The follow symbol of B is c, so the conflict in state (5) cannot be resolved.

Marking

7 (10 points). Play through the LR parsing process for the sentence "acbcc $\$$ ". If there is a choice somewhere, make this explicit. Show in each step at which state in your LR(0) automaton you are.

Solution 7.

stack	input acbcc $\$$	remark
$(\mathbf{0})$	cbcc	shift
$(\mathbf{0}) \mathrm{a}(\mathbf{1})$	$\mathrm{bcc} \$$	reduce by $C \rightarrow \mathrm{c}$
$(\mathbf{0}) \mathrm{a}(\mathbf{1}) \mathrm{c}(\mathbf{8})$	$\mathrm{bcc} \$$	reduce by $A \rightarrow \mathrm{aC}$
$(\mathbf{0}) \mathrm{a}(\mathbf{1}) C(\mathbf{3})$	$\mathrm{bcc} \$$	shift
$(\mathbf{0}) A(\mathbf{2})$	$\mathrm{cc} \$$	shift (choice)
$(\mathbf{0}) A(\mathbf{2}) \mathrm{b}(\mathbf{5})$	$\mathrm{c} \$$	reduce by $C \rightarrow \mathrm{c}$
$(\mathbf{0}) A(\mathbf{2}) \mathrm{b}(\mathbf{5}) \mathrm{c}(\mathbf{8})$	c	
$(\mathbf{0}) A(\mathbf{2}) \mathrm{b}(\mathbf{5}) C(\mathbf{6})$	$\mathrm{c} \$$	reduce by $B \rightarrow \mathrm{bC}$
$(\mathbf{0}) A(\mathbf{2}) B(\mathbf{4})$	$\mathrm{c} \$$	shift
$(\mathbf{0}) A(\mathbf{2}) B(\mathbf{4}) \mathrm{c}(\mathbf{8})$	$\$$	reduce by $C \rightarrow \mathrm{c}$
$(\mathbf{0}) A(\mathbf{2}) B(\mathbf{4}) C(\mathbf{7})$	$\$$	shift
$(\mathbf{0}) A(\mathbf{2}) B(\mathbf{4}) C(\mathbf{7}) \$$		reduce by $S \rightarrow A B C \$$
S		accept

Marking

LL parsing

In these exercises we will look at the grammar

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow \mathrm{a} A \mathrm{a} \mid \varepsilon \\
& B \rightarrow \mathrm{~b} B \mathrm{~b} \mid \varepsilon
\end{aligned}
$$

8 (15 points). Complete the table below by computing the values in the columns for the appropriate rows. Use True and False for property values and set notation for everything else.

NT	Production	empty	emptyRhs first	firstRhs	follow	lookAhead
S						
	$A \rightarrow A B$					
A						
	$A \rightarrow \mathrm{a} A \mathrm{a}$					
	$A \rightarrow \varepsilon$					
B						
	$B \rightarrow \mathrm{bBb}$					
	$B \rightarrow \varepsilon$					

Solution 8.

NT	Production	empty	emptyRhs	first	firstRhs	follow	lookAhead
S	$S \rightarrow A B$	True	True	$\{\mathrm{a}, \mathrm{b}\}$	\{ a, b \}	\{ \}	\{a, b $\}$
A		True		\{a\}		\{a, b $\}$	
	$A \rightarrow \mathrm{a} A \mathrm{a}$	True	False	\{b\}	\{a\}	\{b\}	\{a\}
B	$A \rightarrow \varepsilon$		True		\{ \}		\{a, b $\}$
	$B \rightarrow \mathrm{bBb}$		False		\{b\}		\{b\}
	$B \rightarrow \varepsilon$		True		\{ \}		\{b\}

Marking

9 (10 points). Is the above grammar LL(1)? Explain how you arrived at your answer. If the grammar is not LL(1), give a grammar that generates the same language and is LL(1).

Solution 9.

The above grammar is not LL(1) because the lookAhead sets of the A and B productions have a non-empty intersection. The following grammar generates the same language and is $\operatorname{LL}(1)$.

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow \mathrm{aa} A \mid \varepsilon \\
& B \rightarrow \mathrm{bb} B \mid \varepsilon
\end{aligned}
$$

Since Follow $(A)=\{\mathrm{b}\}$, and Follow $(B)=\{ \}$, the intersections of lookahead sets of the productions for A and B, respectively, are empty.

Marking

10 (5 points). Show the steps that a parser for the above LL(1) grammar goes through to recognize the following input sequence:
aabb
For each step (one per line), show the stack, the remaining input, and the action (followed by the relevant symbol or production) performed. If you reach a step in which you cannot proceed, note the action as "error."

Solution 10.

stack	input	action
S	aabb	initial state
$A B$	aabb	expand S
$\mathrm{aa} A B$	aabb	expand A
$A B$	bb	match $(2 \times)$
B	bb	expand A
$\mathrm{bb} B$	bb	expand B
ε	ε	match $(2 \times)$

Marking

