INFOB3TC - Solutions for Exam 1

Johan Jeuring

Friday, 12 December 2014, 08:30-10:30

Please keep in mind that there are often many possible solutions and that these example solutions may contain mistakes.

Questions

A group chat in Whatsapp looks as follows:

These group chats are stored on Whatsapp servers, and sent to the computers (phones, tablets) of the members of the groupchat. The internal representation of the above group chat (or at least a part of it) might look as follows:

```
GROUPCHAT
```

```
NAME Whitmans Chat
MEMBERS Alice, France, Jack, Ned, Peter, Zissou
MESSAGES
    MESSAGE
        NAME Alice
        TIME 7:01 PM, March 14, 2013
        CONTENT I'll never forget this country. I love even the way it smells END
        MESSAGE
            NAME Jack
            TIME 11:40 PM, March 14, 2013
            CONTENT mountains.jpg END
        MESSAGE
            NAME Peter
            TIME 7:01 PM, March 14, 2013
            CONTENT Amazing END
                MESSAGE
            NAME Ned
            TIME 7:03 PM, March 14, 2013
            CONTENT Wow U+1F60D END
MESSAGE
            NAME Zissou
            TIME 11:39 AM, March 15, 2013
            CONTENT http:\\www.willis.com\ END
```

In this exercise we look at the language of group chats.
A group chat consists of the keyword GROUPCHAT followed by:

- the keyword NAME followed by a name,
- the keyword MEMBERS followed by a non-empty list of members, separated by comma's,
- the keyword MESSAGES followed by a list of messages, where a message consists of the keyword MESSAGE, followed by the keyword NAME, a name, the keyword TIME, a time, the keyword CONTENT, some content, and the keyword END.

1 (12 points). Give a concrete syntax (a context-free grammar) of this language for group chats. You may use nonterminal Identifier to recognise a single name, and String to recognise the content of a message (a string not containing "END").

Solution 1.

```
GroupChat \(\rightarrow\) "GROUPCHAT" "NAME" Name "MEMBERS" Members "MESSAGES" Message*
Name \(\rightarrow\) Identifier \({ }^{+}\)
Members \(\rightarrow\) Name ", " Members | Name
```

```
Message \(\rightarrow\) "MESSAGE" "NAME" Name "TIME" Time "CONTENT" String "END"
Time \(\rightarrow\) Hours ":" Minutes APM ", " Month Day ", " Year
Hours \(\rightarrow\) Natural
Minutes \(\rightarrow\) Natural
\(A P M \rightarrow\) "AM" | "PM"
Month \(\rightarrow\) "January" \(|\ldots|\) "December"
Day \(\rightarrow\) "0" \(|\ldots| " 31 "\)
Year \(\rightarrow\) Natural
```

Here is the above example sentence:

```
ex = "GROUPCHAT NAME " + name + " MEMBERS " + members + " MESSAGES " + messages
name = "Whitmans Chat"
members = "Alice, France, Jack, Ned, Peter, Zissou"
messages = message1 H "\n" H message 2 H "\n" H message3 H "\n" + message4
message1 = "MESSAGE NAME Alice TIME 7:01 PM, March 14, 2013 " +
    "CONTENT I'll never forget this country. I love even the way it smells END"
message2 = "MESSAGE NAME Jack TIME 11:40 PM, March 14, 2013 CONTENT mountains.jpg END"
message3 = "MESSAGE NAME Peter TIME 7:01 PM, March 14, 2013 CONTENT Amazing END"
message4 = "MESSAGE NAME Ned TIME 7:03 PM, March 14, 2013 CONTENT Wow U+1F60D END"
message5 = "MESSAGE NAME Zissou TIME 11:39 AM, March 15, 2013 " +
    "CONTENT http:\\www.willis.com END"
```


Marking

String instead of Identifier (or something like that) in Name: -1
Integers for the numbers (hours, minutes, days, years) in the language: -1
Comma at the end of the members list: -1
Members not separated by comma's: -1
Keywords forgotten: -1 per keyword
Requiring two digits where one digit is also possible: -1
String instead of list of months: -1
Letters instead of AM and PM: -1
No definition of Time or Date: - 2 per concept

The abstract syntax of the language for groups chats is given by the following (data)types:

$$
\begin{aligned}
\text { type GroupChat } & =(\text { Name, Members, Messages }) \\
\text { type Name } & =[\text { String }] \\
\text { type Members } & =[\text { Name }] \\
\text { type Messages } & =[\text { Message }] \\
\text { type Message } & =(\text { Name, Time, Content }) \\
\text { type Time } & =(\text { Hours, Minutes, APM, Date })
\end{aligned}
$$

type Hours	$=$ Int
type Minutes	$=$ Int
data APM	$=$ AM \mid PM deriving Show
type Date	$=($ Day, Month, Year $)$
type Day	$=$ Int
type Month	Int
type Year	Int
type Content	$=$ String

2 (12 points). Define a parser p GroupChat :: Parser Char GroupChat that parses sentences from the language of groupchats.

Solution 2.

```
spaces = greedy (satisfy isSpace)
tokensp s = token s <* spaces
identifiersp = identifier <* spaces
integersp = integer <* spaces
pGroupChat :: Parser Char GroupChat
pGroupChat = (, ,)
    <$ tokensp "GROUPCHAT"
    <* tokensp "NAME"
    <*> pName
    <* tokensp "MEMBERS"
    <*> pMembers
    <* tokensp "MESSAGES"
    <*> many pMessage
pName :: Parser Char Name
pName = many identifiersp
pMembers :: Parser Char Members
pMembers = listOf pName (tokensp ",")
pMessage :: Parser Char Message
pMessage =(\_ntc->(n,t,c))
    <$> tokensp "MESSAGE"
    <* tokensp "NAME"
    <*> pName
    <* tokensp "TIME"
    <*> pTime
    <* tokensp "CONTENT"
    <*> untilEND
untilEND :: Parser Char Content
untilEND =(const [] <$> tokensp "END")
    <<|> ((:)<$> satisfy (const True)<*> untilEND)
```

```
pTime :: Parser Char Time
\(p\) Time \(\quad=(\lambda\) hours minutes apm month day year \(\rightarrow(\) hours, minutes, apm, \((\) day, month, year \()))\)
    <\$> integersp
    <* tokensp":"
    <*> integersp
    \(<*>\quad(A M<\$\) tokensp "AM" \(<1>P M<\$\) tokensp "PM")
    <* tokensp ","
    <*> pMonth
    \(<*>\) integersp
    <* tokensp ","
    <*> integersp
months = ["January", "February", "March","April","May", "June"
    , "July", "August", "September", "October", "November", "December"
    ]
pMonth :: Parser Char Month
\(p\) Month \(=\) foldr1 \((<\mid>)(z i p W i t h(\lambda x y \rightarrow\) const \(x<\$\rangle y)[1 . .12]\) (map tokensp months))
— Parser test cases
test \(=p\) GroupChat ex
```


Marking

No abstract syntax for AM/PM: -1
Incorrect parsing of months, and computation of corresponding integer: -2
Minor errors: -1
Tokens not (or partially) parsed: -2(-1)
Does not follow the concrete syntax: $-4(-2)$
Types as value constructors: -2
String instead of a parser for strings: -2

3 (12 points). Whatsapp only offers chats and groupchats. I can imagine it would be useful to have a hierarchy of chats. For example, Utrecht University might start a chat, with seven subchats for the seven faculties. So people can chat at the university level, or at their own faculty level. Each faculty chat consists of faculty wide chats, but also of chats at the various departments of the faculty, and so on. In this exercise I encode a slightly simplified version of this situation. A GroupChatTree is either a single GroupChat, or it collects a number of GroupChatTree's under a particular name.

$$
\begin{aligned}
\text { data GroupChatTree } & =\text { Fork Name }[\text { GroupChatTree }] \\
& \mid \text { Single GroupChat }
\end{aligned}
$$

Define the algebra type, and the fold for the datatype GroupChatTree. You may assume that the type GroupChat is a constant type such as Int and String, that is, you don't have to define a fold for GroupChat.

Solution 3

type GroupChatTreeAlgebra $a=($ Name $\rightarrow[a] \rightarrow a$, GroupChat $\rightarrow a)$
foldGroupChatTree :: GroupChatTreeAlgebra $a \rightarrow$ GroupChatTree $\rightarrow a$
foldGroupChatTree (fork, single) = fold where
fold (Fork name groupchattrees) $=$ fork name (map fold groupchattrees)
fold (Single groupchat) = single groupchat

- some examples to test the solutions
gcCS :: GroupChat
$g C C S=([$ "Computer", "Science" $]$
, [["Johan", "Jeuring"], ["Joao", "Pizani"]]
, [(["Johan", "Jeuring"], atime, "Hi!"), (["Johan", "Jeuring"], atime, "there")]
)
$g c W$:: GroupChat
$g c W=([$ "Mathematics" $]$
,[["Rob", "Bisseling"], ["Jan", "Hoogendijk"]]
,[(["Rob","Bisseling"], atime, "Hello"),(["Jan", "Hoogendijk"],atime, "world!")]
)
gcWI :: GroupChatTree
$\mathrm{gcWI}=$ Fork ["WI"] [Single gcCS, Single gcW$]$
atime $=(7,24, P M,(27,11,2014))$

Marking

Algebra not a type: -2
Algebra completely wrong: -4
No type argument of algebra: -2
Two type arguments to the algebra: -2
Algebra just a single type: -1
Not using parameter in list of recursive calls in algebra: -3
Recursive parameter instead of GroupChat: -2
Type fold incorrect: -2
No parens in pattern matching: -1
No recursive def of fold: -6
No map in recursive def of fold: -3
Resulttype of fold not a type variable: -2
Minor mistakes: -1
fold... instead of fold in the recursive call (without the algebra argument): -2

4 (9 points). Define a function $n r$ OfMessagesGCT :: GroupChatTree \rightarrow Int that returns the number of messages present in a GroupChatTree. Define function nrOfMessagesGCT as a fold on the datatype GroupChatTree.

Solution 4.

```
nrOfMessagesGCT :: GroupChatTree \(\rightarrow\) Int
\(n r\) OfMessagesGCT \(=\) foldGroupChatTree ( \(\backslash\) _xs \(\rightarrow\) sum \(x s, n r\) OfMessagesGC)
nrOfMessagesGC :: GroupChat \(\rightarrow\) Int
nrOfMessagesGC (,\(- \quad\), messages \()=\) length messages
test1 \(=\) nrOfMessagesGCT gcWI
```


Marking

Using foldGroupChatTree but no definition of fork and single: +2 (-7)
Using foldGroupChatTree but incorrect definition of fork and single: +2(-7)
Using Fork $n x s$ as argument to fork (interpreting arguments correctly): -2
Algebra and tree argument order swapped: -1
Double recursion: -5
No fold but explicitly recursive definition: -6
Wrongly typed fork function: -3
const 1 instead of $n r O f$ MessagesGC: -3

5 (9 points). Define a function messagesMember :: GroupChatTree \rightarrow Member \rightarrow Messages that returns the messages of a particular member in a GroupChatTree. Define function messagesMember as a fold on the datatype GroupChatTree.

Solution 5.

```
messagesMember :: GroupChatTree \(\rightarrow\) Name \(\rightarrow\) Messages
messagesMember \(=\) foldGroupChatTree messagesMemberAlgebra
    where messagesMemberAlgebra \(=(\backslash\) xs \(m \rightarrow\) concat (map ( \(\$ m\) ) xs \()\)
    \(, \lambda(-,-m s) \rightarrow \lambda m \rightarrow\) filter \((\lambda(n, t, c) \rightarrow n=m) m s)\)
test2 \(=\) messagesMember gcWI ["Johan", "Jeuring"]
```


Marking

Using foldGroupChatTree but no definition of fork and single: +2 (-7)
Using foldGroupChatTree but incorrect definition of fork and single: +2(-7)
Not passing the name on recursively: -3
Forget the dollar when passing on the name recursively: -1
Member name and recursive results swapped in algebra: -1
Member name and recursive results swapped in fold: -3
Double recursion: -5

6 (9 points).
(a) Give an example of a grammar that can be left-factorized Solution 6.

$$
S \rightarrow \mathrm{a} S \mathrm{~b}|\mathrm{a} S \mathrm{a}| \mathrm{a}
$$

Marking

(b) Left-factorize this grammar

Solution 6.

$$
\begin{aligned}
& S \rightarrow \mathrm{a} T \\
& T \rightarrow S U \mid \varepsilon \\
& U \rightarrow \mathrm{~b} \mid \mathrm{a}
\end{aligned}
$$

Marking

(c) Explain why left-factorization may be a useful grammar transformation Solution 6.

When you translate a context-free grammar that can be left-factorized into a combinator parser, the parser performs the same actions twice for the part that can be left-factorized. If the parser is of a particular recursive structure, this might lead to an exponential time required for parsing.

Marking

7 (9 points).
(a) Give an example of a grammar that is left-recursive Solution 7.

$$
S \rightarrow S S \mid \mathrm{a}
$$

Marking

(b) Remove this left-recursion

Solution 7.

$$
\begin{aligned}
& S \rightarrow \mathrm{a} \mid \mathrm{a} \mathrm{Z} \\
& Z \rightarrow S \mid S Z
\end{aligned}
$$

Marking

(c) Explain why removing left-recursion may be a useful grammar transformation Solution 7. If you directly translate a left-recursive context-free grammar to a parser combinator, the parser combinator does not terminate on any input. Removing left-recursion removes this cause of non-termination.

Marking

Loop in the grammar instead of the parser: -1
Ensures termination instead of avoids non-termination: -1

Consider the following NFA (Nondeterministic Finite-state Automaton), with start state S, and final state Z.

8 (6 points). Construct a regular grammar with the same language.

Solution 8 .

$$
\begin{aligned}
& S \rightarrow \mathrm{a} A \\
& S \rightarrow \mathrm{a} B \\
& S \rightarrow \mathrm{~b} Z \\
& A \rightarrow \mathrm{a} B \\
& A \rightarrow \mathrm{~b} C \\
& B \rightarrow \mathrm{~b} A \\
& B \rightarrow \mathrm{~b} B \\
& B \rightarrow \mathrm{a} Z \\
& C \rightarrow \mathrm{a} Z \\
& Z \rightarrow \mathrm{a} Z \\
& Z \rightarrow \varepsilon
\end{aligned}
$$

Marking

No productions for Z : -2
Production $Z \rightarrow \varepsilon$ forgotten: -1

9 (6 points). Construct a DFA (Deterministic Finite-state Automaton) with the same language (you may draw a DFA).

Solution 9.

Note that state C is not reachable from the start state, so it may safely be removed.

Marking

No final states: -1
Minor errors (single forgotten transition): -1
Still non-deterministic: -4

10 (6 points). Suppose we have two context-free grammars $G_{1}=\left(T_{1}, N_{1}, R_{1}, S_{1}\right)$ and $G_{2}=\left(T_{2}, N_{2}, R_{2}, S_{2}\right)$, where the intersection of N_{1} and N_{2} is empty. Define $G=\left(T_{1} \cup\right.$ $\left.T_{2}, N_{1} \cup N_{2} \cup\{S\}, R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}, S\right)$, where S is the new startsymbol.
(a) What is the language of G ?
(b) This construction does not work for regular grammars. Why not?
(c) Describe the construction of a grammar with the same language as G, which is regular if both G_{1} and G_{2} are regular.

Solution 10.

(a) $L(G)=\left\{x y \mid x \leftarrow L\left(G_{1}\right), y \leftarrow L\left(G_{2}\right)\right\}$.
(b) The resulting grammar is not regular, since it is of the form $S \rightarrow S_{1} S_{2}$, and hence it has two instead of one non-terminals in a right-hand side of a production.
(c) See Theorem 8.10 in the lecture notes: we obtain a regular grammar for G if we replace in G_{1} every production of the form $T \rightarrow \mathrm{x}$ and $T \rightarrow \varepsilon$ by $T \rightarrow \mathrm{x} S_{2}$ and $T \rightarrow S_{2}$, respectively.

Marking

$G=G_{1} G_{2}:-1$
Using automata instead of productions in c): -1

