Exam Data Mining
 Date: 5-11-2015
 Time: 13.30-16.30
 Answer sketch

Question 1 Short Questions (20 points)

(a) By definition

$$
\operatorname{conf}(X \rightarrow Y)=\frac{s(X \cup Y)}{s(X)}
$$

When we move an item from the right-hand side to the left-hand side, the denominator $(s(X))$ will decrease, and the numerator $(s(X \cup Y))$ doesn't change. Hence, the confidence will increase.
(b) Counterexample: take two graphs on three nodes, one the full graph, the other a v-structure. Both have the same moral graph, but they are not equivalent.
(c) An induced subtree preserves the parent-child relationship, an embedded subtree only preservers the ancestor-descendant relationship.
(d) The edges between A and B, and between B and C become bi-directional. The other two edges remain as they are.

Question 2: Classification Trees (25 points)

(a) $i\left(t_{1}\right)=\frac{9}{10} \times \frac{1}{10}=\frac{9}{100} ; i\left(t_{2}\right)=\frac{30}{35} \times \frac{5}{35}=\frac{6}{49} ; i\left(t_{3}\right)=\frac{60}{65} \times \frac{5}{65}=\frac{12}{169}$.
(b)

$$
\Delta i=\frac{9}{100}-\left(\frac{35}{100} \times \frac{6}{49}+\frac{65}{100} \times \frac{12}{169}\right) \approx 0.001
$$

(c) $T_{1}=\left\{t_{1}\right\}$.
(d) $\left\{t_{1}\right\}$ is the smallest minimizing subtree for $\alpha \in[0, \infty)$.

Question 3: Frequent Sequence Mining (15 points)

We present the answer in tables, like in Apriori.
Level 1:

candidate	support	frequent?
A	3	$\boldsymbol{\checkmark}$
B	3	$\boldsymbol{\checkmark}$
C	1	\boldsymbol{X}
D	1	\boldsymbol{x}

Level 2:

candidate	support	frequent?
$A A$	3	\checkmark
$A B$	2	\checkmark
$B A$	3	\checkmark
$B B$	2	$\boldsymbol{\checkmark}$

Level 3:

candidate	support	frequent?
$A A A$	1	\boldsymbol{X}
$A A B$	1	\boldsymbol{X}
$A B A$	2	$\boldsymbol{\checkmark}$
$A B B$	2	$\boldsymbol{\checkmark}$
$B A A$	2	$\boldsymbol{\checkmark}$
$B A B$	1	\boldsymbol{X}
$B B A$	1	\boldsymbol{X}
$B B B$	0	\boldsymbol{x}

There are no level 4 candidates, i.e. all level 4 pre-candidates we can make by combining 2 level 3 frequent sequences contain an infrequent subsequence. E.g., pre-candidate $A B A A$ contains infrequent sequence $A A A$.

Question 4: Undirected Graphical Models (25 points)

(a) $\hat{P}(S=1 \mid B=1)=\frac{39}{59} \approx 0.66$ and $\hat{P}(S=1 \mid B=0)=\frac{16}{41} \approx 0.39$.
(b) Yes, probability of getting sick when you have eaten a Berehap is bigger than when you have not eaten a Berehap.
(c) Graph: $B-F-S$.
(d) The fitted counts are:

$\hat{n}(B, F, S)$	S		
B	F	0	1
0	0	22.29	3.71
0	1	3.46	11.54
1	0	7.71	1.29
1	1	11.54	38.46

(e) The deviance is 0.22 . Since $0.22<\chi_{2 ; 0.05}^{2}=6$, the model is not rejected.

Question 5: Bayesian Networks (15 points)

(a) Every operation that changes the parent set of $D: \operatorname{add}(C \rightarrow D), \operatorname{add}(B \rightarrow D)$, delete $(A \rightarrow D)$, and reverse $(A \rightarrow D)$.
(b) We only look one step ahead. Deleting the edge may be bad, so we never get the opportunity to add it in the opposite direction.

