Exam Data Mining

Date: 5-11-2015

Time: 13.30-16.30

Answer sketch

Question 1 Short Questions (20 points)

(a) By definition

$$\operatorname{conf}(X \to Y) = \frac{s(X \cup Y)}{s(X)}.$$

When we move an item from the right-hand side to the left-hand side, the denominator (s(X)) will decrease, and the numerator $(s(X \cup Y))$ doesn't change. Hence, the confidence will increase.

- (b) Counterexample: take two graphs on three nodes, one the full graph, the other a v-structure. Both have the same moral graph, but they are not equivalent.
- (c) An induced subtree preserves the parent-child relationship, an embedded subtree only preservers the ancestor-descendant relationship.
- (d) The edges between A and B, and between B and C become bi-directional. The other two edges remain as they are.

Question 2: Classification Trees (25 points)

(a)
$$i(t_1) = \frac{9}{10} \times \frac{1}{10} = \frac{9}{100}$$
; $i(t_2) = \frac{30}{35} \times \frac{5}{35} = \frac{6}{49}$; $i(t_3) = \frac{60}{65} \times \frac{5}{65} = \frac{12}{169}$.

(b)
$$\Delta i = \frac{9}{100} - \left(\frac{35}{100} \times \frac{6}{49} + \frac{65}{100} \times \frac{12}{169}\right) \approx 0.001$$

- (c) $T_1 = \{t_1\}.$
- (d) $\{t_1\}$ is the smallest minimizing subtree for $\alpha \in [0, \infty)$.

Question 3: Frequent Sequence Mining (15 points)

We present the answer in tables, like in Apriori.

Level 1:

candidate	support	frequent?
A	3	✓
В	3	✓
$^{\rm C}$	1	X
D	1	X

Level 2:

candidate	support	frequent?
AA	3	√
AB	2	✓
BA	3	✓
BB	2	✓

Level 3:

candidate	support	frequent?
AAA	1	X
AAB	1	X
ABA	2	✓
ABB	2	✓
BAA	2	✓
BAB	1	X
BBA	1	X
BBB	0	X

There are no level 4 candidates, i.e. all level 4 pre-candidates we can make by combining 2 level 3 frequent sequences contain an infrequent subsequence. E.g., pre-candidate ABAA contains infrequent sequence AAA.

Question 4: Undirected Graphical Models (25 points)

(a)
$$\hat{P}(S=1|B=1) = \frac{39}{59} \approx 0.66$$
 and $\hat{P}(S=1|B=0) = \frac{16}{41} \approx 0.39$.

(b) Yes, probability of getting sick when you have eaten a Berehap is bigger than when you have not eaten a Berehap.

2

(c) Graph: B - F - S.

(d) The fitted counts are:

$\hat{n}(B, F, S)$		S	
B	F	0	1
0	0	22.29	3.71
0	1	3.46	11.54
1	0	7.71	1.29
1	1	11.54	38.46

(e) The deviance is 0.22. Since $0.22 < \chi^2_{2;0.05} = 6$, the model is not rejected.

Question 5: Bayesian Networks (15 points)

- (a) Every operation that changes the parent set of D: $add(C \to D)$, $add(B \to D)$, $delete(A \to D)$, and $reverse(A \to D)$.
- (b) We only look one step ahead. Deleting the edge may be bad, so we never get the opportunity to add it in the opposite direction.