
Department of Information and Computing Sciences, Faculty of Science, UU.
Made available in electronic form by the TBC of A–Eskwadraat
In 2010/2011, the course INFOFP was given by Doaitse Swierstra.

Functioneel Programmeren (INFOFP)
8 november 2011

Question 1: The function foldl’ (1 point)

Give the type and the definition of the function foldl’. Give an example where its use is profitable
and an example where its use is not giving the desired effect at all.

Question 2: Fair enumeration (1 point)

Define a value enumInts :: [(Int,Int)] in which the distance from an occurrence of any value from the
set {(x, y) | x ∈ Int , y ∈ Int} to the beginning of the list is a finite value (note that Int ’s can also be
negative).

Question 3: Permutations (1 point)

Write a function permutations :: [a]→ [[a]] which returns all permutations of its parameter.

Question 4: Side effects (1 point)

Someone writes the following program and does not get any output.

import System.Random

createRandomValues = sequence (repeat randomIO)

printRandomValues n = do randomValues <- createRandomValues

print (take n randomValues)

main = printRandomValues 10

Rewrite the program such that it does what the code suggests, i.e. printing 10 random numbers.

Question 5: Is tja correct? (1 point)

Remark of the TBC: The original code used in this question was wrong. The following code is the
corrected code.

Given the data type

data Tree a = Leaf a

| Node (Tree a) (Tree a)

we define the function tja:

tja t = let tja’ (Leaf a) n ls = (0, if n==0 then a:ls else ls)

tja’ (Node l r) n ls = let (lm,ll) = tja’ l (n-1) rl

(rm,rl) = tja’ r (n-1) ls

in ((lm ‘min‘ rm) + 1, ll)

(m, r) = tja’ t m []

in r

If this code computes something explain what it computes (small example?); if it does not compute
anything explain why this is the case.



Question 6: The function enumBf (1 point)

Write a function enumBf :: Tree a → [a] which returns a list which contains the a-values from the
leaves resulting from a breadth-first enumeration (i.e. leaves at a lower depth occur earlier in the list).

Hint: use a helper function enumBf’ :: [Tree a]→ [a].

Question 7: Parsing (2 points)

We can define a somewhat simplistic data type XML and a parser for it:

type Tag = String

data XML = Tag Tag [XML]

| Content String

pXML = (pOpenTag >>= (λt→ Tag t <$> pMany pXML <∗ pCloseTag t))
<|> Content <$> pString

Write the functions pOpenTag and pCloseTag. Write a parser pXML’ which also recognises attributes,
and returns the result as a value of type XML’. You may assume that pString takes care of escaping
special characters. Assume also that pString and pSym remove any trailing whitespace (i.e. you do
not have to worry about spaces, newlines, tabs, etc).

data XML’ = Tag’ Tag Attrs [XML’]

| Content’ String

type Attrs’ = [(String, String)]

An example input might be:

<TABLE COLS="1" BORDER="0" CELLSPACING="4" CELLPADDING="5">

<TR>

<TD COLSPAN="2" WIDTH="100%" BGCOLOR="#99CCFF" ALIGN="CENTER">

<B>Functional programming in the Netherlands</B>

</TD>

</TR>

</TABLE>

Question 8: Heaps (2 points)

A heap is a data structure described by a data type quite similar to a search tree:

data Heap a = Top a (Heap a) (Heap a)

| Empty

with the property that the a value in a Top node dominates (>) all the values contained in its two
children, which have this property themselves too.

1. Write a function checkHeap :: Ord a ⇒ Heap a → Bool which returns True if its argument is
a heap, and False otherwise. Hint: you may want to write a helper function checkHeap’ :: Ord
a ⇒ a → Heap a → Bool.

2. Write a function mergeHeaps :: Ord a ⇒ Heap a → Heap a → Heap a which combines its two
arguments into a heap.

3. Write the function enumHeap :: Ord a ⇒ Heap a → [a] such that the value r:

v = enumHeap . foldr mergeHeaps Empty $ [ Top x Empty Empty | x← [1..10]]

evaluates to [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], i.e. the elements stored in the heap come out in reversed
sorted order.


