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Before you begin:

• Do not forget to write down your name and student number above.

• If necessary, explain your answers in English.

• Use only the empty boxes under the questions to write your answer and explanations in.

• At the end of the exam, only hand in the filled-in exam paper. Use the blank paper provided with this
exam only as scratch paper (kladpapier).

• Answers will not only be judged for correctness, but also for clarity and conciseness.

In any of the answers below you may (but do not have to) use the following well-known Haskell functions
and operators, unless stated otherwise: id, (.), const, flip, head, tail, (++), concat, foldr (and its
variants), map, filter, sum, all, any, not, (&&), (||), zip, reverse, and all the members of the type classes
Show, Eq, Ord, Enum, Num, Functor, Applicative, and Monad.

1. The function zip generates a list of pairs from a pair of lists. Note that if one list is shorter than the one,
the final elements of the longest are thrown away.

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

We want to abstract this notion into a type class Zippable,

class Zippable f where

zip :: f a -> f b -> f (a, b)

(a) (8 points) Consider the following data type for binary trees,
data Tree a = Leaf | Node a (Tree a) (Tree a)

Write its Zippable instance. As in the case of lists, you might need to throw away information
from some subtrees to implement zip.



(b) (7 points) Write the following generic function zipWith. This function applies a mapping over the
elements of two Zippable containers, whenever the containers are also Functors.
zipWith :: (Functor f, Zippable f) :: (a -> b -> c) -> f a -> f b -> f c

Hint: use the function uncurry :: (a -> b -> c) -> (a, b) -> c.

(c) (5 points) There is another way to implement a zip function for a list, namely,
instance Zippable [] where

zip xs ys = [(x, y) | x <- xs, y <- ys]

Does this definition coincide with one given at the beginning of the exercise? If not, give an exam-
ple in which each definition gives a different outcome.

2. Remember that an operation (<>) :: m -> m -> m and an element e :: m form a commutative monoid
over type m if the following laws are satisfied,

(1) x <> (y <> z) = (x <> y) <> z

(2) x <> e = x

(3) e <> x = x

(4) x <> y = y <> x

Given the following definitions for foldr, reverse, (.), and filter,

(a) foldr (<>) e [] = e

(b) foldr (<>) e (x:xs) = x <> foldr (<>) e xs

(c) reverse [] = []

(d) reverse (x:xs) = reverse xs ++ [x]

(e) (f . g) x = f (g x)

(f) filter p [] = []

(g) filter p (x:xs) | p x = x : filter p xs

(h) | otherwise = filter p xs
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(a) (5 points) Using equational reasoning, prove that the following holds if (<>) and e form a com-
mutative monoid.
foldr (<>) e [x] = x

(b) (15 points) Prove by induction that the following holds if (<>) and e form a commutative monoid,
foldr (<>) e = foldr (<>) e . reverse

You are allowed to use the following lemma in your proof:
foldr (<>) e (xs ++ ys) = (foldr (<>) e xs) <> (foldr (<>) e ys)

Clearly state the cases you consider, the induction hypothesis, and justify each equality.
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(c) (10 points) Prove that the following holds for any predicate p :: a -> Bool,
length (filter p xs) + length (filter (not . p) xs) = length xs

Use induction. State and prove here the [] case.

State the induction hypothesis and prove here the (x:xs) case. You need to distinguish two cases,
depending on whether the predicate p holds for the element x or not.
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3. Consider the following data type of simple arithmetic expressions,

data Expr = Literal Integer | Add Expr Expr | Mult Expr Expr

which comes with two operations to evaluate and optimize an expression,

eval :: Expr -> Integer

opt :: Expr -> Expr

(a) (6 points) Give definitions for the following QuickCheck properties:

• Adding zero to an expression evaluates to the same result.
• Multiplication is commutative.
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(b) (4 points) Write a QuickCheck property checkOptimizer which checks that the evaluation of an
expression e gives the same result after optimization.

(c) (5 points) Write the Arbitrary instance for Expr.
class Arbitrary a where

arbitrary :: Gen a

Hint: below you can find some of the primitives of QuickCheck random generation.
choose :: Random a => (a, a) -> Gen a

frequency :: [(Int, Gen a)] -> Gen a

elements :: [a] -> Gen a

(d) (5 points) In order to check that our optimizer works correctly, we want to write a property which
are only executed if the random expression given by QuickCheck contains a subexpression of the
form Mult (Literal 0) e or Mult e (Literal 0). We write the following code:
checkZeroMult e = hasZeroSubexpression e ==> checkOptimizer e

What is the problem with this definition? What could you do to solve the problem?

Page 6



4. The Result data type is a close relative of Maybe. A value of type Result e r may describe a succesful
computation, or a failure along with a description of the problem.

data Result e r = Fail e | Ok r

This type is a functor, as witnessed by the following declaration,

instance Functor (Result e) where

fmap f (Fail e) = Fail e

fmap f (Ok r) = Ok (f r)

Note that in the case of a failure we do not apply the function to the inner result. Instead, we keep the
description of the problem untouched.

(a) (10 points) The type Result e is also a monad. Complete the corresponding instance declaration.
instance Monad (Result e) where

return :: a -> Result e a

return = ...

(>>=) :: Result e a -> (a -> Result e b) -> Result e b

x >>= f = ...

(b) (5 points) Sinterklaas has to visit every town in the Netherlands to give presents. Unfortunately,
both travelling from town to town and giving the presents in each town might go wrong, which
we model by a couple of functions,
travel :: Town -> Town -> Result String ()

give :: Town -> Result String ()

Using those functions, we can write a function which, given a list of the towns in the order in which
they have to be visited, executes the whole Sinterklaas tour.
tour :: [Town] -> Result String ()

tour [] = Fail "No towns to visit!"

tour [x] = give x

tour (x:y:zs) = case give x of

Fail e1 -> Fail e1

Ok _ -> case travel x y of

Fail e2 -> Fail e2

Ok _ -> tour (y:zs)
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Rewrite the function tour using do notation.

5. Multiple choice questions. Choose one answer.

(a) (5 points) Which is the result of 0 ‘seq‘ (\x -> undefined)?
A. This expression is not well-typed.
B. 0.
C. undefined.
D. \x -> undefined.

(b) (5 points) Given the following expressions:

1. \f -> (f True, f ’a’)

2. \f -> f (True, ’a’)

A. None of them is well-typed.
B. (1) is well-typed and (2) is not well-typed.
C. (1) is not well-typed and (2) is well-typed.
D. Both of them are well-typed.

(c) (5 points) Which of the following is true?
A. You can always replace return (return x) by return x.
B. You can write an expression of type IO (IO Int).
C. Every functor is also a monad.
D. Evaluation in Haskell occurs eagerly.
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