EXAM FUNCTIONAL PROGRAMMING

Thursday the 5th of November 2015, 17.00 h. - 20.00 h.

Name:
Student number:
Before you begin: Do not forget to write down your name and student number above. If necessary, explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think is the (one and only) best answer. Use the empty boxes under the other questions to write your answer and explanations in. Use the blank paper provided with this exam only as scratch paper (kladpapier). At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for correctness, but also for clarity and conciseness. A total of one hundred points can be obtained; divide by 10 to obtain your grade. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell functions/operators: zipWith, zip, id, concat, foldr (and variants), map, filter, const, all, any, fip, fst, snd, not, (.), elem, take, drop, takeWhile, drop While, head, tail, repeat, replicate, (++), lookup, max, min and all members of the type classes Eq, Num, Ord, Show and Read.

1. (i) To commemorate the 200th birthday of George Boole, define a type class, call it BoolA with a single argument a, to represent the concept of a boolean algebra. It should support functions that represent binary conjunction (andb), binary disjunction (orb) and unary negation (notb), as well as two constants bot and top. Here top represents the neutral element of andb, and bot that of orb.
```
\ldots./6
    class BoolA a where
    andb :: a 品 a a
    orb :: a->a->>a
    notb :: a > a
    bot :: a
    top :: a
```

(ii) Give an instance definition for BoolA Bool.

```
\ldots/6
    instance BoolA Bool where
            andb = (&&)
            orb = (||)
            notb = not
    bot = False
    top = True
```

(iii) This exercise was disqualified from the exam due to its incorrect phrasing. The consequence is that everyone gets 4 points for this question, and on top of that, those that did have something sensible can get additional points.
(iv) Give an instance definition for values of type [a] (for any a that is an instance of BoolA) that extends the operations to lists elementwise. For example, andb [True, False] [True, True, False] = [andb True True, andb False True] $=[$ True, False $]$. Note that the length of the result is the same as the minimum of the length of the two arguments. Again make sure that top and bot are in fact neutral for the right operator.

```
\ldots/6
    instance BoolA a => BoolA [a] where
        andb = zipWith andb
        orb = zipWith orb
        notb = map notb
        bot = repeat bot
        top = repeat top
```

(v) Why is it not a good idea to have andb and orb return a list that is as long as the longest (this could then be done by correctly padding the shorter list)? In which situation would this not be a problem?
$\ldots / 4$ top and bot are defined as infinite lists (or actually, lengths of arbitrary length). This is really useful and can be done because of lazy evaluation. But if we take the max, then we can't use infinite lists, and in particular, we cannot use top and bot.
2. (i) Implement the function minimum $::($ Ord $a) \Rightarrow[a] \rightarrow a$ for lists that computes the smallest element of a list. It should display a nice run-time error message when you pass the empty list. Also, you must implement it with a fold (choose one of foldr, foldr1, foldl, and foldl1).
$\ldots / 6$
minimum [] = error "minimum was passed an empty list"
minimum xs $=$ foldl1 $\min x s$
-- or
minimum $x s=$ foldl1 $(\backslash x y \rightarrow$ if $x<y$ then x else $y) x s$
(ii) Which of the other three could you have used as well? Which do you think are most suitable to use, and why?
$\ldots / \mathbf{3}$ Any would do, but the foldl1 and foldr1 can be considered more elegant, since they take the default from the list which you know will be there. Some people remarked that the foldr/foldr1 version is faster, which is also an acceptable answer.
(iii) Reflect on why it would or would not be a good idea to use a strict fold function, such as foldl'.
$\ldots / 3$ Yes, it is a good idea. If you try it out you will in fact see it is much faster.
(iv) A fellow student has defined a function sort :: (Ord $a) \Rightarrow[a] \rightarrow[a]$ for sorting a list. Define a QuickCheck property that verifies that the first element of a sorted list is the smallest in the list. Make sure the QuickCheck property never crashes: only non-empty lists may contribute to the test set.
$\ldots / 6$ prop_minimum' $x s=$ not $($ null $x s)==>$ head $($ sort xs $)==$ minimum xs

3. $\ldots / \mathbf{2 0} \mathrm{b}, \mathrm{a}, \mathrm{d}, \mathrm{a}$

The following multiple choice questions are each worth 5 points.
(i) What is the type of flip foldr, where flip :: $(a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$ switches the arguments a and b of a function.
a. $(a \rightarrow c) \rightarrow[a \rightarrow(a \rightarrow c) \rightarrow c] \rightarrow a \rightarrow c$
b. $b \rightarrow(a \rightarrow b \rightarrow b) \rightarrow[a] \rightarrow b$
c. It is type incorrect, since foldr takes three arguments.
d. It is type incorrect, but for another reason then the one listed under (c).
(ii) Which expressions are equivalent, i.e., can replace each other in any context?
a. takeWhile p. drop While p and dropWhile p. takeWhile p
b. takeWhile p. dropWhile q and takeWhile $(\backslash x \rightarrow q x \& \& p x)$
c. drop While p. takeWhile q and takeWhile q. drop While p
d. dropWhile p.dropWhile q and takeWhile $(\backslash x \rightarrow p x \& \& q x)$
(iii) I A general purpose language cannot be embedded in another general purpose language.

II A major advantage of shallow over deep EDSLs is that you can optimize EDSL programs before running them.
a. Both I and II are true
b. Only I is true
c. Only II is true
d. Both I and II are false
(iv) Assume \perp is an expression that always crashes, and $f::$ Int \rightarrow Int \rightarrow Int is a function that always crashes. Which of the following statements is false:
a. seq (f1) 3 crashes.
b. $(\backslash x \rightarrow()) \perp$ equals ().
c. head (map $\perp[1,2]$) crashes.
d. For basic types, seq and deepseq have the same behaviour.
4. Given the following Haskell definition where $g::$ Int \rightarrow Maybe Int and $h:: a \rightarrow$ Maybe a

```
\(f w=\) do
    \(x<-g w\)
    let \(x s=\) do
        \(z<-[1,2]\)
        \(v<-\) ['a', 'b']
        return ( \(z, v\) )
    \(y<-h(\) snd \((\) head \(x s))\)
    return \(y\)
```

Complete the following explanation by filling in the gaps:
In the Maybe monad, Nothing signals failure and Just a successful computation. In the above program, the type of x is Int, the type of y is Char, the type of $x s$ is [(Int, Char)], and the type of f is Int \rightarrow Maybe Char. If we call f and would print the value of $x s$ to the screen then we'd see [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b' $)] . \ldots / \mathbf{1 0}$
5. The following definitions make Maybe into a monad:

$$
\begin{aligned}
\text { (1) } f \gg g> & \text { case } f \text { of } \\
& \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just } x \rightarrow g x
\end{aligned}
$$

(2) return $x=$ Just x

The following is often called the third monad law:

$$
(m \gg=f) \gg=g=m \gg=(\backslash x \rightarrow f x \gg=g)
$$

(i) Prove that the law holds if m equals Nothing. Hint: to simplify the proof you may first want to prove Lemma A that says that Nothing $\gg f=$ Nothing.
$\ldots / 5$ Note: this is 11.9 from the exercises.
It is easiest to first prove Lemma A that says that Nothing $\gg f=$ Nothing:

```
            Nothing \(\gg f\)
    \(===\) (1)
        case Nothing of
            Nothing \(\rightarrow\) Nothing
            Just \(x \rightarrow f x\)
\(===(\) case \()\)
    Nothing
```

Then the proof goes like this:

$$
\begin{aligned}
& (\text { Nothing >>f)>> } \gg g \\
=== & (\text { LemmaA }) \\
& \text { Nothing >> } \\
=== & (\text { LemmaA }) \\
& \text { Nothing } \\
=== & (\text { LemmaA }) \\
& \text { Nothing > } \gg(\backslash x \rightarrow f x \gg g)
\end{aligned}
$$

(ii) Prove that the law holds for $m=$ Just x. Again, it may be wise to first prove a Lemma B that Just $x \gg f=f x$.

```
\(\ldots / 6\)
    Just \(x \gg f\)
    \(===(1)\)
            case Just \(x\) of
            Nothing \(\rightarrow\) Nothing
            Just \(x^{\prime} \rightarrow g x^{\prime}\)
    \(===\left(\right.\) case , and \(x^{\prime}\) equals \(\left.x\right)\)
            \(g x\)
            \((\) Just \(x \gg f) \gg=g\)
    \(===(\) Lemma B)
            \(f x \gg g\)
    \(===(\) expansion \()\)
            \(\left(\backslash x^{\prime} \rightarrow\left(f x^{\prime} \gg g\right)\right) x\)
    \(===\) (case )
            case Just \(x\) of
            Nothing \(\rightarrow\) Nothing
            Just \(x^{\prime \prime} \rightarrow\left(\backslash x^{\prime} \rightarrow\left(f x^{\prime} \gg g\right)\right) x^{\prime \prime}\)
            Just \(x \gg\left(\backslash x^{\prime} \rightarrow\left(f x^{\prime} \gg g\right)\right)\)
```

Some people saw that you can in fact replace the last two steps with Lemma B again. Of course, that is correct too.
6. Induction
(1) []$\quad++y s=y s$
(2) $(x: x s)++y s=x:(x s++y s)$,
(3) foldr op $e[]=e$
(4) foldr op e ($x: x s$) $=o p x$ (foldr op e xs)
(i) Given that $o p$ is an associative binary operator, and e a neutral element of $o p$, prove by induction that
foldr op e $(x s++y s)=o p(f o l d r ~ o p ~ e x s)(f o l d r ~ o p ~ e ~ y s) . ~ . ~$
$\ldots / \mathbf{1 5}$ See 13.2: 1 for each equation (8 in all), 3 for the right choice of induction variable, 2 for starting each case correctly.

