
EXAM FUNCTIONAL PROGRAMMING
Thursday the 6th of November 2014, 13.30 h. - 16.30 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in. Use the empty paper provided with this exam only as scratch paper (kladpapier).
At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for
correctness, but also for clarity and conciseness. A total of one hundred points can be obtained; divide
by 10 to obtain your grade. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators: id , concat , foldr (and variants), map, filter , const , flip, fst , snd , not , (.), elem,
take, drop, takeWhile, dropWhile, head , tail , (++), lookup and all members of the type classes Eq ,
Num, Ord , Show and Read .

1. (i) Define a type class Finite a (eindig), that has one member values that enumerates all (finitely
many) values of type a.

. . . /5

class Finite a where
values :: [a ]

(ii) Define a suitable instance for Finite Bool .

. . . /3

instance Finite Bool where
values = [False,True ]

(iii) Define a suitable instance for Finite (a, b, c) with a list comprehension, for the case that a,
b and c are instances of Finite.

. . . /6

instance (Finite a,Finite b,Finite c) => Finite (a, b, c) where
values = [(x , y , z ) | x <− values, y <− values, z <− values ]

(iv) Why is it not possible to add a member size :: Int (that returns the length of values) to the
Finite type class?

. . . /5 Because then the type inferencer cannot tell which instance you want to use, since

the a of Finite a is not visible in the type of size.
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2. In this question we deal with a function segs :: [a ] −> [[a ]] which returns all the segments of
the argument list. A list L1 is a segment of another list L2 , if you can obtain L1 from L2 by
dropping any number of elements (including 0) at the beginning of L2 , and dropping any number
of elements (including 0) at the end of L2 .

(i) What are the segments of [1,2,3,4]?

. . . /4 [[],[4],[3],[3,4],[2],[2,3],[2,3,4],[1],[1,2],[1,2,3],[1,2,3,4]]

(ii) Explain how you can compute segs (x :xs) from segs xs (for example by using concrete values
for x and xs)

. . . /6 Segments of segs xs are also in segs (x : xs). What we are missing are the segments

that start with x . Those are exactly the inits (x : xs) but with the empty list removed (since
we have that one already).

(iii) Now, write the function segs :: [a ] −> [[a ]]

. . . /6 This is from the reader:

inits ′ [ ] = [[ ]]
inits ′ (x : xs) = [ ] : map (x :) (inits ′ xs)

segs [ ] = [[ ]]
segs (x : xs) = segs xs ++ map (x :) (inits ′ xs)

There is an alternative for the last line:
segs (x : xs) = segs xs ++ tail (inits (x : xs))
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(iv) Write a QuickCheck property numberProp :: [Int ] −> Property that tests whether segs xs has
the correct number of segments, but only for input lists of length at least 3.

. . . /6

numberProp :: [Int ] −> Property
numberProp xs = lenxs >= 3 ==> length (segs xs) == nrOfSegs lenxs

where
lenxs = length xs
nrOfSegs 0 = 1
nrOfSegs n = nrOfSegs (n − 1) + n

Alternatively, you can also have seen that nrOfSegs n = (n+1)*n ‘div‘ 2 and use that instead.

3. Given is the following datatype for trees:

data Tree = Leaf | Bin Tree Int Tree deriving Eq

(i) Define a function listLike :: Tree −> Bool that returns True if every Bin node has at most
one non-Leaf child.

. . . /7

listLike :: Tree −> Bool
listLike Leaf = True
listLike (Bin l r) = (r == Leaf && listLike l) || (l == Leaf && listLike r)

-- or the somewhat less cryptic

listLike Leaf = True
listLike (Bin Leaf r) = listLike r
listLike (Bin l Leaf ) = listLike l
listLike (Bin ) = False

(ii) Assume that an instance Arbitrary Tree has been defined, write a generator
genNLLTree :: Gen Tree for arbitrary trees that are not list-like.

. . . /7 This one does the trick:

genNLLTree :: Gen Tree
genNLLTree =
do

ts <− sequence [arbitrary , arbitrary , arbitrary , arbitrary ] -- start with 3 trees
let nlls = filter (not . listLike) ts
if null nlls then -- all are listLike

do
i1 <− arbitrary
i2 <− arbitrary
i3 <− arbitrary
return (Bin (Bin (ts !! 0) i3 (ts !! 1)) i1

(Bin (ts !! 2) i2 (ts !! 3)))
else

return (head nlls)
Another acceptable alternative is the following straightforward solution:

genNLLTree :: Gen Tree
genNLLTree =

do
t <− arbitrary
if listLike t then

return t
else

genNNLTree
But this only works because the chances of an abitrary tree being list-like is not very large.
If you were asked to generate only list-like trees, a solution like the latter would not work.
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4. Given are the following definitions (with line numbers):

(1) id x = x

(2) flip f x y = f y x

(3) reverse [ ] = [ ]
(4) reverse (x : xs) = reverse xs ++ [x ]

(5) foldr f e [ ] = e
(6) foldr f e (x : xs) = f x (foldr f e xs)

(7) foldl f e [ ] = e
(8) foldl f e (x : xs) = foldl f (f e x ) xs

(i) Prove by induction that foldr (:) [ ] = id (use the line numbers above when you refer to a
particular given equation in your proof):

. . . /7 Bewijs met inductie naar xs:

foldr (:) [] id

IH xs foldr (:) [] xs id xs

= (def. id (1))
xs

[] foldr (:) [] []

= (def. foldr (5))
[]

[]

x:xs foldr (:) [] (x:xs)

= (def. foldr (6))
(:) x (foldr (:) [] xs)

= (IH xs)
(:) x xs

= (postfix to infix)
x : xs

x : xs
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(ii) Prove by induction that foldr f e (reverse xs) = foldl (flip f ) e xs for all f , e and xs of
the right type. You may use (without proof) the following lemma: foldr f e (as ++ [b ]) =
foldr f (f b e) as for all suitable f , e, as and b (again, use the line numbers when you refer
to a particular given equation in your proof).

. . . /13 Bewijs met inductie naar xs:

IH xs foldr f e (reverse xs) foldl (flip f) e xs

[] foldr f e (reverse [])

= (def. reverse (3))
foldr f e []

= (def. foldr (5))
e

foldl (flip f) e []

= (def. foldl (5))
e

x:xs foldr f e (reverse (x:xs))

= (def. reverse (4))
foldr f e (reverse xs++[x])

= (hulpwet hierboven)
foldr f (f x e) (reverse xs)

foldl (flip f) e (x:xs)

= (def. foldl (8))
foldl (flip f) (flip f e x) xs

= (def. flip (2))
foldl (flip f) (f x e) xs

= (IH met f x e voor e )
foldr f (f x e) (reverse xs)
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5. . . . /25. Correct answers are: b, d, d, c, c The following multiple choice questions are each

worth 5 points.

(i) Which of the following is true?

a. The function return is idempotent (i.e. return (return a) can safely be replaced by
return a).

b. There exist expressions of type IO (IO Int).

c. If you define an instance of the class Eq you have at least to specify the function (==).

d. The class Enum has a fixed number of instances.

(ii) I A jargon is a special kind of domain-specific language.

II It is easier to achieve fluency with a deeply embedded DSL than with a shallowly em-
bedded DSLs.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iii) Which observation is correct when comparing the types of (map map) map and map (map map)?

a. The type of the first is less polymorphic than the type of the second.

b. The type of the first is more polymorphic than the type of the second.

c. The types are the same, since function composition is associative.

d. One of the expressions is type incorrect.

(iv) What is the type of foldr flip?

a. b −> (b −> a −> b) −> [a ] −> b

b. (a −> b) −> [b −> b ] −> a −> b

c. (a −> b) −> [a −> (a −> b) −> b ] −> a −> b

d. The expression is type incorrect

(v) In the Haskell prelude the list constructor [ ] has been made an instance of the class Monad :

instance Monad [ ] where
ma >= a2mb = concat (map a2mb ma)
return a = [a ]

Which of the following equals [f x y | x <− expr1 , y <− expr2 ]?

a. do return (f x y)
where do x <− expr1

y <− expr2

b. do x <− expr1
y <− expr2
f x y

c. do x <− expr1
y <− expr2
return (f x y)

d. do y <− expr2
x <− expr1
return (f x y)
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