
EXAM FUNCTIONAL PROGRAMMING
Tuesday the 1st of October 2016, 08.30 h. - 10.30 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in. Use the blank paper provided with this exam only as scratch paper (kladpapier).
At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for
correctness, but also for clarity and conciseness. A total of 100 points can be obtained. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators, unless stated otherwise: replicate, id , concat , foldr (and variants), map, filter ,
const , all , any , flip, fst , snd , not , (.), elem, take, drop, takeWhile, dropWhile, head , tail , zip, reverse,
(++), lookup, max , min and all members of the type classes Eq , Num, Ord , Show and Read .

1. LISTS

(i) Define a function vouw :: [a] −> [(a, a)] that takes a list xs, and pairs the first with the
last, the second with the one-but-last, and so on. If the list has odd length, the middle
element is paired with a copy of itself. So vouw [1, 2, 3, 4, 5] = [(1, 5), (2, 4), (3, 3)] and
vouw [1, 2, 3, 4, 5, 6] = [(1, 6), (2, 5), (3, 4)]. Implement this function without using recursion
yourself, and without list comprehensions.

. . . /8

vouw :: [a] −> [(a, a)]
vouw xs = zip l1 l2

where
n = length xs
l1 = take ((n + 1) ‘div ‘ 2) xs
l2 = take ((n + 1) ‘div ‘ 2) (reverse xs)

(ii) Define a function ulh that takes a list xs, and pairs each element with all other elements in xs.
ulh [1, 2, 3, 2] = [(1, 2), (1, 3), (1, 2), (2, 1), (2, 3), (2, 2), (3, 1), (3, 2), (3, 2), (2, 1), (2, 2), (2, 3)],
in that order. Do this using recursion and without list comprehensions. Moreover, of the
above listed functions you may only use (++). You may define your own local definitions.

. . . /9

ulh :: [a] −> [(a, a)]
ulh xs = help [] xs

where
help [] = []
help prev (next : rest) = combine next (prev ++ rest) ++

help (prev ++ [next]) rest
combine x [] = []
combine x (y : ys) = (x , y) : combine x ys

1

(iii) Would (ii) be easy to do with a list comprehension? If so, explain how; if not, explain what
makes it hard.

. . . /4 This seems quite hard to do. It is easy of course to one-by-one take every element

out of a list, but finding all elements that precede it, finding all elements that follow it is
not straightforward at all. Since the list compr. as it were iterates through the list for you,
it is cumbersome if you want to compute something during the iteration.

2. DATATYPES Consider the following simplified datatype for representing boolean expressions
(propositions), where variable names consist of a single character:

data Prop = Cons Bool
| Vari Char
| Not Prop
| Prop : \\: Prop

Here, the constructor : \\: represents conjunction ∧, and the constructor Not represents the nega-
tion symbol ¬.

(i) Give the value of type Prop that represents the proposition (¬v ∧ w) ∧ tt where v and w
represent variables, and tt represents the value true.

. . . /6

(Not (Vari ’v’) : \\: Vari ’w’) : \\: Cons True

(ii) Write an evaluator eval :: (Char −> Bool) −> Prop −> Bool that takes a function that maps
variables to booleans, and a proposition, and returns the boolean value of that proposition.

. . . /10

eval :: (Char −> Bool) −> Prop −> Bool
eval env p = heval p

where
heval (Cons b) = b
heval (Vari v) = env v
heval (Not p) = not (heval p)
heval (p : \\: q) = heval p && heval q

2

(iii) For all propositions p, ¬(¬p) = p. Write a simplifier simpl :: Prop −> Prop that uses this
(and only this) equality as much as it can to simplify boolean propositions. For example,
simpl prop = Cons True : \\: Not (Vari ’v’) where
prop = Not (Not (Not (Not (Cons True)) : \\: Not (Vari ’v’))).

. . . /8

simpl :: Prop −> Prop
simpl (Cons b) = Cons b
simpl (Vari v) = Vari v
simpl (Not (Not p)) = simpl p
simpl (Not p) = Not (simpl p)
simpl (p : \\: q) = simpl p : \\: simpl q

(iv) We also have some equalities for conjunction (∧): p ∧ ff = ff = ff ∧ p and p ∧ tt =
p = true ∧ p. Now, simpl prop = Not (Vari ’v’) for the prop given in (iii). Extend simpl
to apply also these optimisations.

. . . /6 Replace the case for : \\: by

simpl ′ (p : \\: q) = let ps = simpl ′ p
qs = simpl ′ q

in
case (ps, qs) of

(Cons False,) −> Cons False
(,Cons False) −> Cons False
(Cons True,) −> qs
(,Cons True) −> ps
otherwise −> ps : \\: qs

3

3. SUBLISTS
In this question we deal with a function subs :: [a] −> [[a]] which returns all the sublists of the
argument list (i.e., all the lists that result by deleting elements from the argument list in any
possible way).

(i) How many sublists does [1,2,3,4] have?

. . . /4 16 = 24. Deleting elements in every possible way includes deleting nothing at all.

(ii) Explain how you can compute subs (x :xs) from subs xs (for example by using concrete values
for x and xs).

. . . /4 If you take all the lists that are sublists of xs, then all you need to do is to take

these, and a copy of each of them but with x cons’ed at the front and put these together.

(iii) Now, write the function subs :: [a] −> [[a]] exploiting sharing where you can.

. . . /6

subs [] = [[]] -- 1 pt
subs (x : xs) = map (x :) subs xs ++ subs xs

where subs xs = subs xs
No sharing: -1.

4

4. MULTIPLE CHOICE . . . /20

d, a, c, c
The following multiple choice questions are each worth 5 points.

(i) I For a left-associative operator⊕, the expression a⊕b⊕c should be interpreted as a⊕(b⊕c).
II When we say infix :<>: in Haskell, we mean that the operator :<>: is associative, so

that we can write expressions like a :<>: b :<>: c.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(ii) I [const ’2’, (flip const) "2"], where flip flips the first two arguments of a function, is
well-typed.

II \ x −> [(flip . flip) x , id] is well-typed.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iii) What is the type of map (’}’:) . map reverse . map (’{’:)?

a. [[a]] −> [[a]]

b. [[String]] −> [[String]]

c. [[Char]] −> [[Char]]

d. The expression is type incorrect.

(iv) The function intersperse :: a −> [a] −> [a] puts its first argument between all the elements
of a non-empty list. Thus intersperse ’a’ "xyz" results in "xayaz". Which definition is
correct, assuming the argument as is not empty?

a. intersperse a as = foldr (\ e r −> (e : a : r)) [] as

b. intersperse a as = foldl (\ r e −> (a : e : r)) [] as

c. intersperse a as = (tail . concat . map (\ x −> [a, x])) as

d. intersperse a as = tail [(a : e) | e <− as]

5

5. TYPE INFERENCE
Determine the type of foldr concatMap, where concatMap :: (a −> [b]) −> [a] −> [b]. You should
not just write down the type below, but also explain how you arrived at that type (for example,
in the way that this is done in the lecture notes of this course).

. . . /15 The type of foldr is (a −> b −> b) −> b −> [a] −> b (2 pts). The type of

concatMap is given, but we now need to make sure our type variables are disjoint, so we
can choose (c −> [d]) −> [c] −> [d].
For foldr concatMap: we get a −> b −> b == (c −> [d]) −> [c] −> [d]. So b = [d],
b = [c], so d = c. Then a = c −> [d] becomes a = c −> [c] and we had already
b = [c]. Substiting this into b −> [a] −> b gives [c] −> [c −> [c]] −> [c], or if you want
[a] −> [a −> [a]] −> [a].

6

