
Solutions to the
Exam Functional Programming

Tuesday, May 23, 2006, 14.00–17.00

EDUC-gamma

Note: these solutions are provided “as is” and confer no rights.

1. SOLUTION: (c).

2. SOLUTION: (b).

3. SOLUTION: (b).

4. SOLUTION: (b).

5. SOLUTION: The smart constructor node takes a value and two subtrees and
applies the appropriate Tree constructor:

node :: Tree a → a → Tree a → Tree a
node Leaf v Leaf = V v
node Leaf v r = VR v r
node l v Leaf = LV l v
node l v r = LVR l v r

The function maxT selects the greatest element from a given tree:

maxT :: Tree a → a
maxT Leaf = ⊥
maxT (LVR l v r) = maxT r
maxT (LV l v) = v
maxT (VR v r) = maxT r
maxT (V v) = v.

The code for insertion and deletion should maintain the search-tree property
as well as the invariant that either a tree is empty (i.e., Leaf) or it has no empty
subtrees. The latter is established by employing the smart constructor node in
the definition of the deletion function.

insert :: (Ord a) ⇒ a → Tree a → Tree a
insert Leaf v = V v
insert (LVR l v0 r) | v 6 v0 = LVR (insert v l) v0 r

| otherwise = LVR l v0 (insert v r)
insert (LV l v0) | v 6 v0 = LV (insert v l) v0

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

| otherwise = LVR l v0 (V v)
insert (VR v0 r) | v 6 v0 = LVR (V v) v0 r

| otherwise = VR v0 (insert v r)
insert (V v0) | v 6 v0 = LV (V v) v0

| otherwise = VR v0 (V v)

delete :: (Ord a) ⇒ a → Tree a → Tree a
delete v Leaf = Leaf
delete v (LVR l v0 r) | v < v0 = node (delete v l) v0 r

| v ≡ v0 = let vmax = maxT l
in node (delete vmax l) vmax r

| otherwise = node l v0 (delete v r)
delete v t@(LV l v0) | v < v0 = node (delete v l) v0 Leaf

| v ≡ v0 = l
| otherwise = t

delete v t@(VR v0 r) | v < v0 = t
| v ≡ v0 = r
| otherwise = node Leaf v0 (delete v r)

delete v t@(V v0) | v ≡ v0 = Leaf
| otherwise = t

6. SOLUTION:

(1) foldProp :: (a → a → a) → (a → a → a) → (a → a → a) → (Bool → a)
→ (String → a) → Prop → a

foldProp fand for fimplies fcnst fvar = fold
where

fold (And p q) = fand (fold p) (fold q)
fold (Or p q) = for (fold p) (fold q)
fold (Implies p q) = fimplies (fold p) (fold q)
fold (Cnst b) = fcnst b
fold (Var x) = fvar x

(2) evalProp :: Prop → Env → Bool
evalProp p env = foldProp (∧) (∨) ((∨) ◦ ¬) id env p

7. SOLUTION: Proceed by induction on the structure of xs.

Case xs = []:

Proceed by equational reasoning.

foldr f e (reverse [])
= (definition of reverse)

foldr f e []
= (definition of foldr)

e
= (definition of foldl)

foldl (flip f) e []

Case xs = x : xs′: foldr f e (reverse xs′) = foldl (flip f) e xs′

2

2

Proceed by equational reasoning.

foldr f e (reverse (x : xs′))
= (defintion of reverse)

foldr f e (reverse xs′ ++ [x])
= (lemma)

foldr f (f x e) (reverse xs′)
= (induction hypothesis)

foldl (flip f) (f x e) xs′

= (definition of flip)
foldl (flip f) (flip f e x) xs′

= (definition of foldl)
foldl (flip f) e (x : xs′)

3

2

