Solutions to the

Exam Functional Programming

Tuesday, May 23, 2006, 14.00-17.00
EDUC-gamma

Note: these solutions are provided "as is" and confer no rights.

1. SOLUTION: (c).
2. SOlution: (b).
3. SOlUTION: (b).
4. SOlution: (b).
5. Solution: The smart constructor node takes a value and two subtrees and applies the appropriate Tree constructor:

$$
\begin{array}{ll}
\text { node } & :: \text { Tree a } \rightarrow \mathrm{a} \rightarrow \text { Tree a } \rightarrow \text { Tree a } \\
\text { node Leaf } v \text { Leaf } & =V v \\
\text { node Leaf } v r & =V R v r \\
\text { node lv Leaf } & =L V l v \\
\text { node lvr } & =\text { LVR } l v r
\end{array}
$$

The function $\max T$ selects the greatest element from a given tree:

```
maxT :: Tree a }->\mathrm{ a
maxT Leaf = 
maxT (LVR lvr)=maxTr
maxT (LVlv) =v
maxT (VRvr) = maxTr
maxT (Vv) = v.
```

The code for insertion and deletion should maintain the search-tree property as well as the invariant that either a tree is empty (i.e., Leaf) or it has no empty subtrees. The latter is established by employing the smart constructor node in the definition of the deletion function.

insert		$::($ Ord $a) \Rightarrow$ a \rightarrow Tree a \rightarrow Tree a
insert Leaf v		$=V \mathrm{v}$
insert (LVR l $v_{0} r$)	$v \leqslant v_{0}$	$=\operatorname{LVR}($ insert $v l) v_{0} r$
	otherwise	$=L V R l v_{0}$ (insert vr)
insert (LVlvo)	$v \leqslant v_{0}$	$=L V($ insert $v l) v_{0}$


```
delete \(\quad::(\) Ord \(a) \Rightarrow \mathrm{a} \rightarrow\) Tree \(\mathrm{a} \rightarrow\) Tree a
delete \(v\) Leaf \(\quad=\) Leaf
delete \(v\left(L V R l v_{0} r\right) \mid v<v_{0} \quad=\) node (delete \(\left.v l\right) v_{0} r\)
    \(\mid v \equiv v_{0} \quad=\) let \(v_{\max }=\operatorname{maxT} l\)
                            in node (delete \(\left.v_{\max } l\right) v_{\max } r\)
delete \(v t @\left(L V l v_{0}\right) \left\lvert\, \begin{aligned} & \text { otherwise }=\text { node } l v_{0}(\text { delete } v r) \\ & \left.v<v_{0}=\text { node (delete } v l\right) v_{0} \text { Leaf }\end{aligned}\right.\)
    \(v \equiv v_{0} \quad=l\)
    | otherwise \(=t\)
delete \(v t @\left(V R v_{0} r\right) \mid v<v_{0}=t\)
    \(v \equiv v_{0} \quad=r\)
    | otherwise \(=\) node Leaf \(v_{0}(\) delete \(v r)\)
deletevt@(Vvo) \(\mid v \equiv v_{0} \quad=\) Leaf
    \(\mid\) otherwise \(=t\)
```

6. SOLUTION:
```
(1) foldProp \(::(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow(\) Bool \(\rightarrow \mathrm{a})\)
            \(\rightarrow\) (String \(\rightarrow\) a) \(\rightarrow\) Prop \(\rightarrow\) a
    foldProp \(f_{\text {and }} f_{\text {or }} f_{\text {implies }} f_{\text {cnst }} f_{\text {var }}=\) fold
    where
            fold \((\) And \(p q) \quad=f_{\text {and }}(\) fold \(p)(\) fold \(q)\)
            fold \((\) Or \(p q)=f_{\text {or }}(\) fold \(p)(\) fold \(q)\)
            fold \((\) Implies \(p q)=f_{\text {implies }}(\) fold \(p)(\) fold \(q)\)
            fold (Cnst b) \(=f_{\text {cnst }} b\)
            fold (Var \(x) \quad=f_{\operatorname{var}} x\)
(2) evalProp \(\quad::\) Prop \(\rightarrow\) Env \(\rightarrow\) Bool
    evalProp p env \(=\) foldProp \((\wedge)(\vee)((\vee) \circ \neg)\) id env \(p\)
```

7. Solution: Proceed by induction on the structure of x s.

Case $x s=[]:$
Proceed by equational reasoning.

\quad foldr $f e($ reverse []$)$	
$=$	(definition of reverse)
$=$	foldr $f e[]$
$=$	(definition of foldr)
$=$	(definition of foldl)

Case $x s=x: x s^{\prime}: \quad$ foldr f e $\left(\right.$ reverse $\left.x s^{\prime}\right)=$ foldl $($ flip $f)$ e $x s^{\prime}$

Proceed by equational reasoning.

foldr f e (reverse ($x: x s^{\prime}$))	
$\left.=\text { foldr } f \text { e (reverse } x s^{\prime}+[x]\right)$	(defintion of reverse)
$=\text { foldr } f(f x e)\left(\text { reverse } x s^{\prime}\right)$	(lemma)
$\text { foldl }(f l i p f)(f x e) x s^{\prime}$	(induction hypothesis)
$=\text { foldl }(\text { flipf })\left(\text { flip fex) } x s^{\prime}\right.$	(definition of flip)
foldl (flip $f) e\left(x: x s^{\prime}\right)$	(definition of foldl)

