
Institute of Computer Science, Faculty of Mathematics and Computer Science,
UU.
Made available in electronic form by the TBC of A−Eskwadraat
In 2004/2005, the course FP was given by Prof. dr. S.D. Swierstra.

Solutions1 Functioneel Programmeren (FP)
14 april 2005

The exam consists of 4 multiple choice questions (1 point each) and 2 open questions (3 points
each). A wrong multiple choice answer will give a negative result (− 1

4 point), whereas omitting
the answer results in 0 points. Therefore, guessing is not recommended.

Exercise 1

Which of the following items is true for the following definition:
class Eq a where
(==), (/=) :: a → a → a → Bool
x /= y = not (x == y)
x == y = not (x =/ y)

a) In a class definition it is not allowed to define functions in terms of each other.

b) This is exactly the definition of the class Eq from the Haskell report.

c) Because Eq is built-in into Haskell it can also be used to compare functions

d) The function definitions are not allowed here, since they belong to the instance declarations
and not the class declaration.

Correct answer: b.

Exercise 2

Using GHCi the Haskell expression 2 + True results in the error message:

No instance for (Num Bool)
arising from use of ‘+’ at <interactive>:1:1

Probable fix: add an instance declaration for (Num Bool)

If we follow the hint of the system we have amongst others to:

a) Define a function fromInteger that maps True to some integer value.

b) Define a function (+) with type Integer → Bool → Int.

c) Define a function for fromInteger that has the type Integer → Bool.

d) Both b and c.

Correct answer: c.

1These solutions were made with great precaution. In case of errors, the TBC cannot be held responsible.
However, she will be glad to be informed: tbc@A-Eskwadraat.nl

Exercise 3

In the Haskell Prelude the list constructor [] has been made an instance of the class Monad:

instance Monad [] where
ma >>= a2mb = concat (map a2mb ma)
return a = [a]

Which of the following equals [f x y | x ← expr1, y ← expr2]?

a) do return (f x y) where do x ← expr1 y ← expr2

b) do x ← expr1 y ← expr2 f x y

c) do x ← expr1 y ← expr2 return (f x y)

d) do y ← expr2 x ← expr1 return (f x y)

Correct answer: c.

Exercise 4

Which of the following is true?

a) If we want to show a value of type [a] we always have to make sure that show is also defined
for values of type a.

b) We can call show on values of type [a], without having defined show for a, as long as a itself
is also a list type.

c) If we define show for [a], then show for values of type a is automatically constructed.

d) We cannot define show for the polymorphic type [a] since we cannot make this work for all
possible types a at the same time.

Correct answer: a.

Exercise 5

Write a function compositions :: [Int] → Int → Int that computes in how many different
ways we can use the stamp (Dutch: postzegel) values from the first argument to build the value
given as second argument (assume we have an infinite supply of all denominations).

A correct answer could be:
compositions 0 = 1

compositions [] = 0

compositions (x:xs) n | n < 0 = 0

| n > 0 = compositions (x:xs) (n - x)

+

compositions xs n

-- or assuming stamps /= 0

compositions stamps n | n < 0 = 0

| n == 0 = 1

| n > 0 = sum [compositions stamps (n - x) | x ← stamps]

Exercise 6

Write a Haskell program that creates a window containing a button and a text field. The text
field contains a number that is increased when the button is pressed. Make sure your layout is
the same as the layout in the screenshot.

A correct answer could be:

main = start $

do { counterV ← varCreate 1

; f ← frame [text := "Counter"]

; l ← entry f [text := "1"]

; b ← button f [text := "increase", on command := increase counterV l]

; set f [layout := column 5 [row 5 [label "Counter value:", widget l]

, hfloatCenter $ widget b

]

]

}
where increase counterV counterLabel =

do { i ← get counterV value

; set counterV [value := i + 1]

; set counterLabel [text := show i]

}

